RESUMO
Pesticides can have harmful impacts on the environment and living organisms. Thus, removing them from polluted water is crucial. In this study, a bionanocomposite of carboxymethyl tragacanth-grafted-poly(3-aminophenol)/zinc oxide@iron oxide (CMT-g-P3AP/ZnO@Fe3O4) synthesized by in situ copolymerization as an efficient adsorbent to eliminate the acetamiprid pesticide from polluted water. The CMT-g-P3AP/ZnO@Fe3O4 magnetic nanocomposite was analyzed utilizing various techniques including FTIR, EDX, FESEM, XRD, BET, CHNSO, and TGA. The results displayed that the resulting nanocomposite with maximum adsorption capacity (Qmax) successfully removed the acetamiprid pesticide from polluted water under optimal conditions such as pH of 7.00, 5.00 mg of adsorbent, 20.0 min duration, and 400 mg/L acetamiprid concentration. According to the linear Langmuir isotherm, the Qmax of the biosorbent was 833 mg/g. The experimental adsorption data fitted well with Temkin's nonlinear isotherm model. The adsorption kinetic data were closely related to the Weber-Morris intraparticle diffusion nonlinear model. After three repetitive cycles, CMT-g-P3AP/ZnO@Fe3O4 can be outstandingly renewed and recycled without significant reduction in its adsorption efficacy, as evidenced by the adsorption-desorption experiments. In addition, the CMT-g-P3AP/ZnO@Fe3O4 displayed the good antibacterial activity against E. coli and S. aureus.
Assuntos
Antibacterianos , Neonicotinoides , Poluentes Químicos da Água , Óxido de Zinco , Poluentes Químicos da Água/química , Óxido de Zinco/química , Adsorção , Antibacterianos/química , Neonicotinoides/química , Tragacanto/química , Nanocompostos/química , Purificação da Água/métodos , Praguicidas/químicaRESUMO
Rheumatoid arthritis (RA) is a chronic autoimmune disease of yet undetermined etiology that is accompanied by significant oxidative stress, inflammatory responses, and damage to joint tissues. In this study, we designed chondroitin sulfate (CS)-modified tragacanth gum-gelatin composite nanocapsules (CS-Cur-TGNCs) loaded with curcumin nanocrystals (Cur-NCs), which rely on the ability of CS to target CD44 to accumulate drugs in inflamed joints. Cur was encapsulated in the form of nanocrystals into tragacanth gum-gelatin composite nanocapsules (TGNCs) by using an inborn microcrystallization method, which produced CS-Cur-TGNCs with a particle size of approximately 80 ± 11.54 nm and a drug loading capacity of 54.18 ± 5.17%. In an in vitro drug release assay, CS-Cur-TGNCs showed MMP-2-responsive properties. During the treatment of RA, CS-Cur-TGNCs significantly inhibited oxidative stress, promoted the polarization of M2-type macrophages to M1-type macrophages, and decreased the expression of inflammatory factors (TNF-α, IL-1ß, and IL-6). In addition, it also exerted excellent anti-inflammatory effects, and significantly alleviated the swelling of joints during the treatment of gouty arthritis (GA). Therefore, CS-Cur-TGNCs, as a novel drug delivery system, could lead to new ideas for clinical therapeutic regimens for RA and GA.
Assuntos
Sulfatos de Condroitina , Curcumina , Gelatina , Nanocápsulas , Nanopartículas , Tragacanto , Curcumina/farmacologia , Curcumina/química , Sulfatos de Condroitina/química , Gelatina/química , Animais , Nanocápsulas/química , Nanopartículas/química , Camundongos , Tragacanto/química , Células RAW 264.7 , Estresse Oxidativo/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Masculino , Tamanho da Partícula , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Liberação Controlada de Fármacos , RatosRESUMO
Naturally occurring plant-based gums and their engineered bio-nanostructures have gained an immense essence of excellence in several industrial, biotechnological, and biomedical sectors of the modern world. Gums derived from bio-renewable resources that follow green chemistry principles are considered green macromolecules with unique structural and functional attributes. For instance, gum mostly obtained as exudates are bio-renewable, bio-degradable, bio-compatible, sustainable, overall cost-effective, and nontoxic. Gum exudates also offer tunable attributes that play a crucial role in engineering bio-nanostructures of interest for several bio- and non-bio applications, e.g., food-related items, therapeutic molecules, sustained and controlled delivery cues, bio-sensing constructs, and so on. With particular reference to plant gum exudates, this review focuses on applied perspectives of various gums, i.e., gum Arabic, gum albizzia, gum karaya, gum tragacanth, and gum kondagogu. After a brief introduction with problem statement and opportunities, structural and physicochemical attributes of plant-based natural gums are presented. Following that, considerable stress is given to green synthesis and stabilization of gum-based bio-nanostructures. The final part of the review focuses on the bio- and non-bio related applications of various types of gums polysaccharides-oriented bio-nanostructures.
Assuntos
Nanoestruturas , Tragacanto , Goma Arábica/química , Gomas Vegetais , Polissacarídeos , Tragacanto/químicaRESUMO
Biomaterial associated bacterial infections are indomitable to treatment due to the rise in antibiotic resistant strains, thereby triggering the need for new antibacterial agents. Herein, composite bactericidal hydrogels were formulated by incorporating silver nanotriangles (AgNTs) inside a hybrid polymer network of Gum Tragacanth/Sodium Alginate (GT/SA) hydrogels. Physico-chemical examination revealed robust mechanical strength, appreciable porosity and desirable in vitro enzymatic biodegradation of composite hydrogels. The antibacterial activity of AgNT-hydrogel was tested against planktonic and biofilm-forming Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. For all the strains, AgNT-hydrogel showed a dose-dependent decrease in bacterial growth. The addition of AgNT-hydrogels (40-80 mg ml-1) caused 87% inhibition of planktonic biomass and up to 74% reduction in biofilm formation. Overall, this study proposes a promising approach for designing antibacterial composite hydrogels to mitigate various forms of bacterial infection.
Assuntos
Infecções Estafilocócicas , Tragacanto , Humanos , Prata/farmacologia , Prata/química , Hidrogéis/farmacologia , Hidrogéis/química , Tragacanto/química , Alginatos/farmacologia , Biofilmes , Bactérias , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/químicaRESUMO
Excipients are components other than active ingredients that are added to pharmaceutical formulations. Naturally sourced excipients are gradually gaining preeminence over synthetically sourced excipients due to local availability and continuous supply. This study aimed to investigate the binding and disintegrating characteristics of gum extracted from the bark of Melia azedarach tree. The bark of Melia azedarach was harvested from Kwahu Asasraka in Ghana. The gum was extracted with ethanol (96%), and the percentage yield, phytochemical constituents, and flow characteristics were assessed. As a disintegrant, the gum was utilized to formulate granules at varying concentrations of 5% w/w and 10% w/w using starch as the standard. The gum was also utilized to prepare granules at varying concentrations of 10% w/v and 20% w/v as a binder, with tragacanth gum serving as the reference. Eight batches of tablets were produced from the granules. The formulated tablets from each batch were then subjected to quality control testing, which included uniformity of weight, friability, disintegration, hardness, drug content, and dissolution tests, respectively. Tannins, saponins, alkaloids, and glycosides were identified in the Melia azedarach gum. The gum had a percentage yield of 67.75% and also exhibited good flow properties. All tablets passed the uniformity of weight, friability, disintegration, hardness, dissolution, and drug content tests, respectively. According to the findings of the study, Melia azedarach gum can be utilized as an excipient in place of tragacanth and starch as a binder and disintegrant, respectively, in immediate-release tablets.
Assuntos
Melia azedarach , Tragacanto , Química Farmacêutica , Excipientes/química , Solubilidade , Amido , Comprimidos/químicaRESUMO
Storage conditions should be chosen so that they do not affect the action and stability of the active pharmaceutical substance (API), and excipients used in pharmacy. UV irradiation, increased temperature, and relative humidity can decompose storage substances by photolysis, thermolysis, and hydrolysis process, respectively. The effect of physical factors may be the decomposition of pharmaceutical substances or their inappropriate action, including pharmacological effects. Polymers of natural origin are increasingly used in the pharmaceutical industry. With this in mind, we evaluated the effect of storage conditions on the stability of gum arabic (GA) and tragacanth (GT). The influence of higher temperature, UV irradiation, and relative humidity on GA and GT was tested. Thermogravimetry (TG, c-DTA), colorimetric analysis, UV-Vis spectrophotometry, and optical microscopy were used as research methods. The TGA and c-DTA examination indicated that decomposition of GA starts at a higher temperature compared to GT. This indicate that gum arabic is more resistant to higher temperatures compared to tragacanth. However, the conducted analysis showed that gum arabic is more sensitive to the tested storage conditions. Among the tested physical conditions, both polymers were most sensitive to conditions of increased relative humidity in the environment.
Assuntos
TragacantoRESUMO
BACKGROUND: Because of the high surface/volume ratio in nanometric size particles, they exhibit novel functional properties in many industries, such as emulsion stabilization. Tragacanth nanoparticles (TNPs) were prepared in this research, applying intense ultrasound energy followed by anti-solvent precipitation in ethanol. RESULTS: Investigation of wettability showed a contact angle of 88.9 ± 1.7° for TNPs, providing partial wetting of the nanoparticles at the oil-water interface. Pickering emulsions were prepared using TNPs at different oil contents. Also, emulsions containing tragacanth gum solution were prepared as control emulsions. Results showed that the viscosity of the emulsions prepared by the TNPs was significantly lower than those of the control emulsions. Microscopic images showed that the size of the emulsion droplets decreased by increasing the nanoparticle concentrations. Evaluation of the stability of the emulsions showed that changes in the average diameter of the emulsion droplets stabilized by nanoparticles were not significant after 1 month of storage at room temperature. In contrast, the size of the droplet of control emulsions increased over the 30 days of storage. Thermal and mechanical stresses confirmed the effect of the concentration of TNPs and the oil ratio on the stability of the emulsions. CONCLUSION: The use of TNPs as a natural biopolymer is a promising approach in emulsion systems to prevent coalescence and increase the stability of the Pickering emulsions. © 2021 Society of Chemical Industry.
Assuntos
Nanopartículas , Tragacanto , Emulsões , Tamanho da Partícula , Solventes , Ultrassom , ÁguaRESUMO
Water remediation is a crucial subject in present century. Hence, several processes have been used for this aim, which the photodegradation method with high activity, cost-effectiveness, and durability has been remarkable. In this project, the various novel mesoporous Titania nanomaterials (MTN) were green synthesized using Tragacanth gum as coupling agent. The effect of calcination times on the crystalline structure of the resulted MTNs was examined. MTNs displayed the dramatically specific surface area with negative surface charge and nano-sheet structure, and they applied for photodegradation of crystal violet under ultraviolet irradiation due to proper band gaps energy. The obtained MTN in 8 h calcination time (MTN-8) showed the best photoreduction activity. Also, the superoxide radicals, electrons, and hole pairs represented the main degradation agents as the reduction rate of crystal violet. Next, the transformation pathways were proposed, which could be transformation singlet oxygen addition, hydroxyl addition, and N-demethylation reactions.
Assuntos
Violeta Genciana , Tragacanto , Fotólise , TitânioRESUMO
The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers' interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.
Assuntos
Tragacanto/química , Tragacanto/metabolismo , Tragacanto/farmacologia , Antibacterianos/química , Astragalus gummifer/metabolismo , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Embalagem de Alimentos/métodos , Nanofibras/química , Poliésteres/química , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacosRESUMO
A novel eco-friendly and effective electromembrane extraction method combining high-performance liquid chromatography with UV detection was developed for the enrichment and determination of capecitabine. Tragacanth-silver nanoparticles conjugated gel was prepared by dissolving the tragacanth powder in synthesized silver nanoparticles solution and was used as a green membrane in electromembrane extraction. The porosity and presence of silver nanoparticles in the gel were characterized by field emission scanning electron microscopy. This new electromembrane extraction approach uses neither organic solvent nor carrier agents to extract the target analyte. The best electromembrane extraction efficiency was obtained by using 4.0 mm membrane gel thickness containing 2.5% w/v of tragacanth gum, donor phase pH = 5.0, acceptor phase pH = 3.0, applied voltage 50 V, extraction time 20 min, and agitation rate 500 rpm. During method validation under the optimized conditions, good linearity dynamic range between 1 and 500 ng/mL with the coefficient of determination (R2 ) = 0.998 was obtained. Limit of detection and Limit of quantitation were estimated to be 0.84 and 1.0 ng/mL, respectively. Finally, the applicability of this method in real samples was confirmed by an acceptable performance in extraction and determination of capecitabine in human plasma samples.
Assuntos
Capecitabina/análise , Nanopartículas Metálicas/química , Prata/química , Tragacanto/química , Géis/química , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
In this study, NiO nanosheets have been manufactured using a co-precipitation approach that involved the usage of nickel nitrate (Ni (NO3)2.6H2O) as the raw material and tragacanth in the role of a stabilizing agent. NiO nanosheets have been fabricated through the reduction of nickel nitrate solution that had been obtained by the application of aqueous extract of tragacanth, which is capable of functioning as a reducing and stabilizing agent. In the following, the physical and chemical properties of tragacanth-stabilized NiO nanosheets have been identified via FESEM, EDS, XRD, UV-Vis, and FT-IR techniques. According to the XRD pattern, these particular nanosheets have contained a cubic structure and group space Fm3m, along with the average size of about 18 to 43 nm that had been in agreement with the FESEM measurements. In addition, we have evaluated the photocatalytic activity of tragacanth-stabilized NiO nanosheets on the degradations of methylene blue (MB) and methyl orange (MO) dyes. The performed photocatalytic assessment has displayed that the nanosheets can degrade 82% of MO within 210 min and 60% of MB in 300 min. The cytotoxicity of tragacanth-stabilized NiO nanosheets on human Glioblastoma cancer (U87MG) cell lines has been investigated via the MTT assay, while it has been detected in the obtained results that the inhibitory concentration (IC50) had been 125 µg/mL.
Assuntos
Corantes/química , Nanoestruturas/química , Níquel/química , Compostos Orgânicos/química , Processos Fotoquímicos , Tragacanto/química , Catálise , Cinética , Microscopia Eletrônica de Varredura , Oxirredução , Espectrometria por Raios X , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios XRESUMO
Tragacanth, a highly branched carbohydrate polymer isolated from Astragalus, is one of the most commonly used gums in food industry. The primary structure of tragacanth is composed of galacturonic acid monomers connected with α 1-4 links, and it is very similar to the pectin. Tragacanth degradation by microorganisms is significant in two aspects: first, food preservation and microbial growth control due to too much use of tragacanth in the food industry, second, therapeutic and pharmaceutical potential of obtained oligosaccharides. In the present study, we report three new strains of bacteria, Acinetobacter guillouiae strain TD1, Kosakonia sacchari strain TD2, and Bacillus vallismortis strain PD1 with the capability of growing in tragacanth as an only source of carbon and energy. The evolutionary history of the isolated strains was analyzed based on 16S rRNA gene sequences in MEGA7 using the neighbor-joining method. The production of di and tri galacturonic acid due to pectinase activities of the strains were detected by thin layer chromatography (TLC) and liquid chromatography/Mass spectroscopy (LC/MS) analysis. Here is the first report of the ability to grow in tragacanth and pectinase activity monitoring in bacteria. Our results revealed that all of the isolated strains are capable of degrading pectin and tragacanth to oligo-galacturonic acids. The obtained products, which have different structures depending on the tragacanth structures and types of pectinolytic enzymes, would show therapeutic and pharmaceutical potentials.
Assuntos
Bactérias/enzimologia , Cromatografia Líquida , Espectrometria de Massas , Oligossacarídeos/análise , Poligalacturonase/metabolismo , Tragacanto/metabolismo , Acinetobacter/classificação , Acinetobacter/enzimologia , Acinetobacter/genética , Acinetobacter/crescimento & desenvolvimento , Bacillus/classificação , Bacillus/enzimologia , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Enterobacteriaceae/classificação , Enterobacteriaceae/enzimologia , Enterobacteriaceae/genética , Enterobacteriaceae/crescimento & desenvolvimento , Estrutura Molecular , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tragacanto/química , Águas Residuárias/microbiologiaRESUMO
The ζ-potential, a parameter typically obtained by model-dependent transformation of the measured electrophoretic mobility, is frequently used to understand polysaccharide-protein complexation. We tested the hypothesis that two anionic polysaccharides with identical ζ-potentials would show equal binding affinity to the protein ß-lactoglobulin (BLG). We selected two polysaccharide polyelectrolytes (PE) with very different structures: hyaluronic acid (HA) and tragacanthin (TG). Highly precise (±0.1%) turbidimetric titrations were performed to determine critical pH values of complex formation; and PE ζ-potentials were measured for different ionic strengths I at those critical pH values. While phase boundaries (pHcvs. I) showed that HA binds to BLG more strongly (e.g. at a lower pH, for fixed I), comparisons made at fixed ζ-potential indicated that TG binds more strongly. The source of this contradiction is the effect of the bulky side chains of TG on its friction coefficient which diminishes its mobility and hence the resultant ζ-potential; while having a distinctly separate effect on the interaction between BLG and the carboxylated backbone of TG. Thus, unless the locus of the bound protein coincides with the shear plane, the ζ-potential does not directly contribute to the electrostatic PE-protein interaction.
Assuntos
Lactoglobulinas/metabolismo , Polissacarídeos/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Concentração de Íons de Hidrogênio , Lactoglobulinas/química , Nefelometria e Turbidimetria , Concentração Osmolar , Polissacarídeos/química , Tragacanto/metabolismoRESUMO
Currently, natural polymer based hydrogels has attracted great attention of orthopedic surgeons for application in bone tissue engineering. With this aim, osteoinductive capacity of Gum Tragacanth (GT) based hydrogel was compared to collagen hydrogel and tissue culture plate (TCPS). For this purpose, adipose-derived mesenchymal stem cells (AT-MSCs) was cultured on the hydrogels and TCPS and after investigating the biocompatibility of hydrogels using MTT assay, osteoinductivity of hydrogels were evaluated using pan osteogenic markers such as Alizarin red staining, alkaline phosphatase (ALP) activity, calcium content and osteo-related genes. Increasing proliferation trend of AT-MSCs on GT hydrogel demonstrated that TG has no-cytotoxicity and can even be better than the other groups i.e., highest proliferation at day 5. GT hydrogel displayed highest ALP activity and mineralization when compared to the collagen hydrogel and TCPS. Relative gene expression levels have demonstrated that highest expression of Runx2, osteonectin and osteocalcin in the cells cultured GT hydrogel but the expression of collagen type-1 remains constant in hydrogels. Above results demonstrate that GT hydrogel could be an appropriate scaffold for accelerating and supporting the adhesion, proliferation and osteogenic differentiation of stem cells which further can be used for orthopedic applications.
Assuntos
Tecido Adiposo/citologia , Diferenciação Celular , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Células-Tronco Mesenquimais/citologia , Tragacanto/metabolismo , Fosfatase Alcalina/metabolismo , Adesão Celular/genética , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Cultivadas , Colágeno Tipo I/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Microscopia Eletrônica de Varredura , Osteocalcina/genética , Osteogênese/genética , Osteonectina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de TempoRESUMO
This study was conducted to evaluate the role of Unani herbal drugs Pepsil and Safoof-e-katira on the gastro esophageal reflux disease (GERD). This was multicentre randomized case control study conducted at Matab Hakeem Muhammad Noor-ud-din, Burewala; Aziz Muhammad din Medical and Surgical Centre, Burewala and Shifa-ul-mulk Memorial Hospital, Hamdard University Karachi. The patients were selected according to inclusion and exclusion criteria. In test group-1 the male female ratio was 40%, 60%; test group-2 was 42%, 58% and in control group was 44%, 56% respectively. The observed symptoms in the study were increased appetite (TG-1-95%, TG-2-95% and CG-89%), difficulty in swallowing (TG-1-93%, TG-2-96% and TC-94%), belching/burping (TG-1-97%, TG-2-97% and CG-95%), vomiting (TG-1-90%, TG-2-96% and CG-89%), heart burn (TG-1-100%, TG-2-100% and CG-98%), palpitation (TG-1-100%, TG-2-100% and CG-97%), epigastric pain (TG-1-97%, TG-2-97% and CG-90%), abdominal cramps (TG-1-97%, TG-2-98% and CG-95%), tenesmus (TG-1-100%, TG-2-100% and CG-97%), flatulence (TG-1-100%, TG-2-75% and CG-95%), wakeup during sleep (TG-1-94%, TG-2-87% and CG-94%). The p-value of the results of the symptoms was 0.000 except flatulence where the value was 0.001. The statistical results of the study prescribed that all the drugs studied (Pepsil, Safoof-e-katira and Omeprazole) are highly significant. The herbal coded drug Pepsil showed no side effects and unani herbal drug safoof-e-katira showed minimum result of 75% in the patients while Omeprazole resulted with some side effects. In the result it can be concluded that the herbal coded drug Pepsil is a potent herbal drug for gastro esophageal reflux disease.
Assuntos
Transtornos de Deglutição/tratamento farmacológico , Refluxo Gastroesofágico/tratamento farmacológico , Azia/tratamento farmacológico , Omeprazol/uso terapêutico , Fitoterapia , Preparações de Plantas/uso terapêutico , Inibidores da Bomba de Prótons/uso terapêutico , Astragalus gummifer , Coriandrum , Transtornos de Deglutição/etiologia , Feminino , Refluxo Gastroesofágico/complicações , Azia/etiologia , Humanos , Masculino , Phyllanthus , Plantago , Tragacanto , Resultado do TratamentoRESUMO
This study involves the development of a new nanocomposite material for use in biological applications. The nanocomposite was based on tragacanth hydrogel (TG), which was formed through cross-linking of Ca2+ ions with TG polymer chains. The utilization of TG hydrogel and silk fibroin as natural compounds has enhanced the biocompatibility, biodegradability, adhesion, and cell growth properties of the nanobiocomposite. This advancement makes the nanobiocomposite suitable for various biological applications, including drug delivery, wound healing, and tissue engineering. Additionally, Fe3O4 magnetic nanoparticles were synthesized in situ within the nanocomposite to enhance its hyperthermia efficiency. The presence of hydrophilic groups in all components of the nanobiocomposite allowed for good dispersion in water, which is an important factor in increasing the effectiveness of hyperthermia cancer therapy. Hemolysis and 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays were conducted to evaluate the safety and efficacy of the nanobiocomposite for in-vivo applications. Results showed that even at high concentrations, the nanobiocomposite had minimal hemolytic effects. Finally, the hyperthermia application of the hybrid scaffold was evaluated, with a maximum SAR value of 41.2 W/g measured in the first interval.
Assuntos
Fibroínas , Hipertermia Induzida , Tragacanto , Alicerces Teciduais , Hidrogéis , Fenômenos MagnéticosRESUMO
Diclofenac sodium (DCF) was reported as an important emerging environmental pollutant and its removal from wastewater is very urgent. In this study, different alkyl substituted ionic liquids (1-alkyl -3-vinyl- imidazolium bromide [CnVIm]Br, n = 4, 6, 8, 10, 12) functionalized tragacanth gum (TG-CnBr) are prepared by radiation induced grafting and crosslinking polymerization. The adsorption behaviors of ionic liquids functionalized tragacanth gum for diclofenac sodium from aqueous solutions are examined. The adsorption capacity of TG-CnBr for diclofenac sodium increases with the increasing of alkyl chain length of the imidazolium cation and the hydrophobicity of the hydrogels. The maximum adsorption capacity by TG-C12Br for diclofenac sodium at 30, 40 and 50 °C were 327.87, 310.56 and 283.29 mg/g, respectively. The adsorption of TG-C12Br towards diclofenac sodium was little decreased with NaCl increasing. The removal efficiency was still remained 94.55 % within 5 adsorption-desorption cycles by 1 M HCl. Also, the adsorption mechanism including electrostatic attraction, hydrophobic interaction, hydrogen bonding, and π - π interaction was proposed.
Assuntos
Líquidos Iônicos , Tragacanto , Poluentes Químicos da Água , Diclofenaco/química , Tragacanto/química , Hidrogéis/química , Água , Adsorção , Poluentes Químicos da Água/químicaRESUMO
Herein, glutamic acid, lysine, arginine and glycine grafted tragacanth gum (TG) were synthesized and designated as TG-Glu, TG-Lys, TG-Arg, and TG-Gly, respectively. The corresponding degrees of substitution (DS) were 0.212, 0.255, 0.394, and 0.169. Thermal, antioxidant, and antibacterial properties of synthesized amino acid-grafted tragacanth gum (ATG) were investigated. The results suggested that the grafting of amino acids onto TG has the potential to alter its thermal properties. When compared with TG and amino acid alone, ATG exhibited significantly enhanced antioxidant and antibacterial properties, with these properties being concentration-dependent. At a concentration of 2 mg/mL for TG-Glu and 3 mg/mL for TG-Arg, TG-Gly, and TG-Lys, the scavenging rate for 2,2'-hypoazido-3-ethylbenzothiazoline sulfonate (ABTS) radical reached 100 %. On the other hand, the scavenging rate of TG-Glu for hydroxyl radical achieved 100 % even at a concentration as low as 1 mg/mL. These properties were accompanied by an increase in reducing force and a notable improvement in the ability to scavenge superoxide anion (O2-). Moreover, the combination of amino acids and TG represents a promising approach to enhance the antimicrobial activities of TG, with the bacteriostatic rate reaching 100 %. Consequently, ATG shows promise as a novel agent for both antioxidation and antimicrobial applications.
Assuntos
Anti-Infecciosos , Tragacanto , Antioxidantes/farmacologia , Tragacanto/química , Aminoácidos/metabolismo , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologiaRESUMO
The present work deals with the evaluation of the physiochemical and biomedical properties of hydrogels derived from copolymerization of tragacanth gum (TG) and gelatin for use in drug delivery (DD) applications. Copolymers were characterized by field emission-scanning electron micrographs (FE-SEM), electron dispersion X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), 13C-nuclear magnetic resonance (NMR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. FE-SEM revealed heterogeneous morphology and XRD analysis demonstrated an amorphous nature with short range pattern of polymer chains within the copolymers. The release of the drug ofloxacin occurred through a non-Fickian diffusion mechanism and the release profile was best described by the Korsmeyer-Peppas kinetic model. The hydrogels exhibited blood compatibility and demonstrated a thrombogenicity value of 75.63⯱â¯1.98â¯% during polymer-blood interactions. Polymers revealed mucoadhesive character during polymer-mucous membrane interactions and required 119⯱â¯8.54 mN detachment forces to detach from the biological membrane. The copolymers illustrated the antioxidant properties as evidenced by 2, 2'-diphenylpicrylhydrazyl (DPPH) assay which demonstrated a 65.71⯱â¯3.68â¯% free radical inhibition. Swelling properties analysis demonstrated that by change in monomer and cross linker content during the reaction increased the crosslinking of the network. These results suggest that the pore size of network hydrogels could be controlled as per the requirement of DD systems. The copolymers were prepared at optimized reaction conditions using 14.54â¯×â¯10-1 molL-1 of acrylic acid monomer and 25.0â¯×â¯10-3 molL-1 of crosslinker NNMBA. The optimized hydrogels exhibited a crosslink density of 2.227â¯×â¯10-4 molcm-3 and a mesh size of 7.966â¯nm. Additionally, the molecular weight between two neighboring crosslinks in the hydrogels was determined to be 5332.209 gmol-1.The results indicated that the combination of protein-polysaccharide has led to the development of hydrogels suitable for potential applications in sustained drug delivery.
Assuntos
Liberação Controlada de Fármacos , Gelatina , Hidrogéis , Polimerização , Tragacanto , Hidrogéis/química , Tragacanto/química , Gelatina/química , Portadores de Fármacos/química , Antioxidantes/química , Antioxidantes/farmacologia , Cinética , Fenômenos QuímicosRESUMO
Pea peptides can lead to degradation through oxidation, deamidation, hydrolysis, or cyclization during production, processing, and storage, which in turn limit their broader application. To stabilize pea peptides, this study employed spray drying technology to create a pea peptide micro-encapsule using maltodextrin, gum tragacanth, and pea peptides. Four key factors, including polysaccharide ratio, glycopeptide ratio, solid-liquid ratio, and inlet temperature, were optimized to enhance the antioxidant properties of the pea peptide micro-encapsule. The results indicated that the utilization of maltodextrin and gum tragacanth significantly improves the storage stability and antioxidant activity of pea peptides. Moreover, optimal storage stability for pea peptides was achieved with a polysaccharide ratio of 9:1, a glycopeptide ratio of 10:1, a solid-liquid ratio of 4:40, and an inlet temperature of 180 °C. After 60 days of storage, the encapsulated pea peptides maintained 70.22 %, 25.19 %, and 40.32 % for scavenging abilities to hydroxyl radical, superoxide anion, and ABTS radical, respectively. In contrast, the unencapsulated pea peptides showed a decline to 47.02 %, 0 %, and 24.46 % in the same antioxidant activities after storage. These findings underscore the potential of spray drying technology to enhance the functional properties of pea peptides for various applications.