Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233324

RESUMO

Feeding ramie cultivars (Boehmaria nivea L.) are an important feedstock for livestock. Increasing their biomass and improving their nutritional values are essential for animal feeding. Gibberellin (GA3) and ethylene (ETH) are two plant hormones that regulate the growth, development, and metabolism of plants. Herein, we report effects of the GA3 and ETH application on the growth and plant metabolism of feeding ramie in the field. A combination of GA3 and ETH was designed to spray new plants. The two hormones enhanced the growth of plants to produce more biomass. Meanwhile, the two hormones reduced the contents of lignin in leaves and stems, while increased the content of flavonoids in leaves. To understand the potential mechanisms behind these results, we used RNA-seq-based transcriptomics and UPLC-MS/MS-based metabolomics to characterize gene expression and metabolite profiles associated with the treatment of GA3 and ETH. 1562 and 2364 differentially expressed genes (DEGs) were obtained from leaves and stems (treated versus control), respectively. Meanwhile, 99 and 88 differentially accumulated metabolites (DAMs) were annotated from treated versus control leaves and treated versus control stems, respectively. Data mining revealed that both DEGs and DAMs were associated with multiple plant metabolisms, especially plant secondary metabolism. A specific focus on the plant phenylpropanoid pathway identified candidates of DEGs and DEMs that were associated with lignin and flavonoid biosynthesis. Shikimate hydroxycinnamoyl transferase (HCT) is a key enzyme that is involved in the lignin biosynthesis. The gene encoding B. nivea HCT was downregulated in the treated leaves and stems. In addition, genes encoding 4-coumaryl CoA ligase (4CL) and trans-cinnamate 4-monooxygenase (CYP73A), two lignin pathway enzymes, were downregulated in the treated stems. Meanwhile, the reduction in lignin in the treated leaves led to an increase in cinnamic acid and p-coumaryl CoA, two shared substrates of flavonoids that are enhanced in contents. Taken together, these findings indicated that an appropriate combination of GA3 and ETH is an effective strategy to enhance plant growth via altering gene expression and plant secondary metabolism for biomass-enhanced and value-improved feeding ramie.


Assuntos
Boehmeria , Giberelinas , Boehmeria/metabolismo , Cromatografia Líquida , Coenzima A/metabolismo , Etilenos , Flavonoides , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Hormônios , Ligases/metabolismo , Lignina/metabolismo , Compostos Organofosforados , Reguladores de Crescimento de Plantas/farmacologia , Plantas/metabolismo , Espectrometria de Massas em Tandem , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo , Transferases/metabolismo
2.
New Phytol ; 230(6): 2275-2291, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33728703

RESUMO

The phenylpropanoid pathway serves a central role in plant metabolism, providing numerous compounds involved in diverse physiological processes. Most carbon entering the pathway is incorporated into lignin. Although several phenylpropanoid pathway mutants show seedling growth arrest, the role for lignin in seedling growth and development is unexplored. We use complementary pharmacological and genetic approaches to block CINNAMATE-4-HYDROXYLASE (C4H) functionality in Arabidopsis seedlings and a set of molecular and biochemical techniques to investigate the underlying phenotypes. Blocking C4H resulted in reduced lateral rooting and increased adventitious rooting apically in the hypocotyl. These phenotypes coincided with an inhibition in AUX transport. The upstream accumulation in cis-cinnamic acid was found to be likely to cause polar AUX transport inhibition. Conversely, a downstream depletion in lignin perturbed phloem-mediated AUX transport. Restoring lignin deposition effectively reestablished phloem transport and, accordingly, AUX homeostasis. Our results show that the accumulation of bioactive intermediates and depletion in lignin jointly cause the aberrant phenotypes upon blocking C4H, and demonstrate that proper deposition of lignin is essential for the establishment of AUX distribution in seedlings. Our data position the phenylpropanoid pathway and lignin in a new physiological framework, consolidating their importance in plant growth and development.


Assuntos
Cinamatos , Plântula , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plântula/metabolismo , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo
3.
Plant Physiol ; 183(3): 957-973, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32332088

RESUMO

Cinnamate 4-hydroxylase (C4H; CYP73A) is a cytochrome P450 monooxygenase associated externally with the endoplasmic reticulum of plant cells. The enzyme uses NADPH-cytochrome P450 reductase as a donor of electrons and hydroxylates cinnamic acid to form 4-coumaric acid in phenylpropanoid metabolism. In order to better understand the structure and function of this unique class of plant P450 enzymes, we have characterized the enzyme C4H1 from lignifying tissues of sorghum (Sorghum bicolor), encoded by Sobic.002G126600 Here we report the 1.7 Å resolution crystal structure of CYP73A33. The obtained structural information, along with the results of the steady-state kinetic analysis and the absorption spectroscopy titration, displays a high degree of similarity of the structural and functional features of C4H to those of other P450 proteins. Our data also suggest the presence of a putative allosteric substrate-binding site in a hydrophobic pocket on the enzyme surface. In addition, comparing the newly resolved structure with those of well-investigated cytochromes P450 from mammals and bacteria enabled us to identify those residues of critical functional importance and revealed a unique sequence signature that is potentially responsible for substrate specificity and catalytic selectivity of C4H.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Sorghum/genética , Sorghum/metabolismo , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo , Genes de Plantas , Estrutura Molecular
4.
J Exp Bot ; 72(8): 3061-3073, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33585900

RESUMO

Cinnamate 4-hydroxylase (C4H) is a cytochrome P450-dependent monooxygenase that catalyzes the second step of the general phenylpropanoid pathway. Arabidopsis reduced epidermal fluorescence 3 (ref3) mutants, which carry hypomorphic mutations in C4H, exhibit global alterations in phenylpropanoid biosynthesis and have developmental abnormalities including dwarfing. Here we report the characterization of a conditional Arabidopsis C4H line (ref3-2pOpC4H), in which wild-type C4H is expressed in the ref3-2 background. Expression of C4H in plants with well-developed primary inflorescence stems resulted in restoration of fertility and the production of substantial amounts of lignin, revealing that the developmental window for lignification is remarkably plastic. Following induction of C4H expression in ref3-2pOpC4H, we observed rapid and significant reductions in the levels of numerous metabolites, including several benzoyl and cinnamoyl esters and amino acid conjugates. These atypical conjugates were quickly replaced with their sinapoylated equivalents, suggesting that phenolic esters are subjected to substantial amounts of turnover in wild-type plants. Furthermore, using localized application of dexamethasone to ref3-2pOpC4H, we show that phenylpropanoids are not transported appreciably from their site of synthesis. Finally, we identified a defective Casparian strip diffusion barrier in the ref3-2 mutant root endodermis, which is restored by induction of C4H expression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Propanóis/metabolismo , Transcinamato 4-Mono-Oxigenase , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo
5.
Plant Cell Rep ; 40(2): 375-391, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33392729

RESUMO

KEY MESSAGE: RgC4H promotes phenolic accumulation in R. glutinosa, activating the molecular networks of its antioxidant systems, and enhancing the tolerance to oxidative stresses exposed to drought, salinity and H2O2 conditions. Rehmannia glutinosa is of great economic importance in China and increasing R. glutinosa productivity relies, in part, on understanding its tolerance to oxidative stress. Oxidative stress is a key influencing factor for crop productivity in plants exposed to harsh conditions. In the defense mechanisms of plants against stress, phenolics serve an important antioxidant function. Cinnamate 4-hydroxylase (C4H) is the first hydroxylase in the plant phenolics biosynthesis pathway, and elucidating the molecular characteristics of this gene in R. glutinosa is essential for understanding the effect of tolerance to oxidative stress tolerance on improving yield. Using in vitro and in silico methods, a C4H gene, RgC4H, from R. glutinosa was isolated and characterized. RgC4H has 86.34-93.89% amino acid sequence identity with the equivalent protein in other plants and localized to the endoplasmic reticulum. An association between the RgC4H expression and total phenolics content observed in non-transgenic and transgenic R. glutinosa plants suggests that this gene is involved in the process of phenolics biosynthesis. Furthermore, the tolerance of R. glutinosa to drought, salinity and H2O2 stresses was positively or negatively altered in plants with the overexpression or knockdown of RgC4H, respectively, as indicated by the analysis in some antioxidant physiological and molecular indices. Our study highlights the important role of RgC4H in the phenolics/phenylpropanoid pathway and reveals the involvement of phenolic-mediated regulation in oxidative stress tolerance in R. glutinosa.


Assuntos
Antioxidantes/metabolismo , Fenóis/metabolismo , Rehmannia/enzimologia , Transcinamato 4-Mono-Oxigenase/metabolismo , Sequência de Aminoácidos , China , Secas , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Propanóis/metabolismo , Rehmannia/genética , Rehmannia/fisiologia , Salinidade , Estresse Fisiológico , Transcinamato 4-Mono-Oxigenase/genética
6.
Plant Cell Rep ; 39(5): 597-607, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32055924

RESUMO

KEY MESSAGE: Cinnamic acid 4-hydroxylase from the hornwort Anthoceros agrestis (AaC4H) was functionally expressed in the moss Physcomitrella patens and characterized at biochemical and molecular levels. Cinnamic acid 4-hydroxylase (C4H), a cytochrome P450-dependent hydroxylase, catalyzes the formation of 4-coumaric acid (=4-hydroxycinnamic acid) from trans-cinnamic acid. In the hornwort Anthoceros agrestis (Aa), this enzyme is supposed to be involved in the biosynthesis of rosmarinic acid (a caffeic acid ester of 3-(3,4-dihydroxyphenyl)lactic acid) and other related compounds. The coding sequence of AaC4H (CYP73A260) was expressed in the moss Physcomitrella patens (Pp_AaC4H). Protein extracts from the transformed moss showed considerably increased C4H activity driven by NADPH:cytochrome P450 reductase of the moss. Since Physcomitrella has own putative cinnamic acid 4-hydroxylases, enzyme characterization was carried out in parallel with the untransformed Physcomitrella wild type (Pp_WT). Apparent Km-values for cinnamic acid and NADPH were determined to be at 17.3 µM and 88.0 µM for Pp_AaC4H and 25.1 µM and 92.3 µM for Pp_WT, respectively. Expression levels of AaC4H as well as two Physcomitrella patens C4H isoforms were analyzed by quantitative real-time PCR. While PpC4H_1 displayed constantly low levels of expression during the whole 21-day culture period, AaC4H and PpC4H_2 increased their expression during the first 6-8 days of the culture period and then decreased again. This work describes the biochemical in vitro characterization of a cytochrome P450-dependent enzyme, namely C4H, heterologously expressed in the haploid model plant Physcomitrella patens.


Assuntos
Anthocerotophyta/enzimologia , Bryopsida/metabolismo , Transcinamato 4-Mono-Oxigenase/metabolismo , Anthocerotophyta/genética , Bryopsida/genética , Clonagem Molecular , Expressão Gênica , Cinética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Fenóis/análise , Filogenia , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transcinamato 4-Mono-Oxigenase/genética , Transformação Genética
7.
Plant Mol Biol ; 101(3): 235-255, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31254267

RESUMO

KEY MESSAGE: The core set of biosynthetic genes potentially involved in developmental lignification was identified in the model C4 grass Setaria viridis. Lignin has been recognized as a major recalcitrant factor negatively affecting the processing of plant biomass into bioproducts. However, the efficient manipulation of lignin deposition in order to generate optimized crops for the biorefinery requires a fundamental knowledge of several aspects of lignin metabolism, including regulation, biosynthesis and polymerization. The current availability of an annotated genome for the model grass Setaria viridis allows the genome-wide characterization of genes involved in the metabolic pathway leading to the production of monolignols, the main building blocks of lignin. Here we performed a comprehensive study of monolignol biosynthetic genes as an initial step into the characterization of lignin metabolism in S. viridis. A total of 56 genes encoding bona fide enzymes catalyzing the consecutive ten steps of the monolignol biosynthetic pathway were identified in the S. viridis genome. A combination of comparative phylogenetic studies, high-throughput expression analysis and quantitative RT-PCR analysis was further employed to identify the family members potentially involved in developmental lignification. Accordingly, 14 genes clustered with genes from closely related species with a known function in lignification and showed an expression pattern that correlates with lignin deposition. These genes were considered the "core lignin toolbox" responsible for the constitutive, developmental lignification in S. viridis. These results provide the basis for further understanding lignin deposition in C4 grasses and will ultimately allow the validation of biotechnological strategies to produce crops with enhanced processing properties.


Assuntos
Lignina/metabolismo , Poaceae/metabolismo , Biomassa , Vias Biossintéticas , Coenzima A Ligases/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Funções Verossimilhança , Metiltransferases/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Filogenia , Plantas Geneticamente Modificadas/metabolismo , Transcinamato 4-Mono-Oxigenase/metabolismo
8.
Mol Biol Evol ; 34(8): 2041-2056, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28505373

RESUMO

Evolution of the phenolic metabolism was critical for the transition of plants from water to land. A cytochrome P450, CYP73, with cinnamate 4-hydroxylase (C4H) activity, catalyzes the first plant-specific and rate-limiting step in this pathway. The CYP73 gene is absent from green algae, and first detected in bryophytes. A CYP73 duplication occurred in the ancestor of seed plants and was retained in Taxaceae and most angiosperms. In spite of a clear divergence in primary sequence, both paralogs can fulfill comparable cinnamate hydroxylase roles both in vitro and in vivo. One of them seems dedicated to the biosynthesis of lignin precursors. Its N-terminus forms a single membrane spanning helix and its properties and length are highly constrained. The second is characterized by an elongated and variable N-terminus, reminiscent of ancestral CYP73s. Using as proxies the Brachypodium distachyon proteins, we show that the elongation of the N-terminus does not result in an altered subcellular localization, but in a distinct membrane topology. Insertion in the membrane of endoplasmic reticulum via a double-spanning open hairpin structure allows reorientation to the lumen of the catalytic domain of the protein. In agreement with participation to a different functional unit and supramolecular organization, the protein displays modified heme proximal surface. These data suggest the evolution of divergent C4H enzymes feeding different branches of the phenolic network in seed plants. It shows that specialization required for retention of gene duplicates may result from altered protein topology rather than change in enzyme activity.


Assuntos
Brachypodium/genética , Transcinamato 4-Mono-Oxigenase/genética , Sequência de Aminoácidos , Brachypodium/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Retículo Endoplasmático/metabolismo , Evolução Molecular , Duplicação Gênica/genética , Genes Duplicados/genética , Lignina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxirredução , Filogenia , Domínios Proteicos/genética , Sementes/metabolismo , Transcinamato 4-Mono-Oxigenase/metabolismo
9.
BMC Plant Biol ; 18(1): 278, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419822

RESUMO

BACKGROUND: The phenylpropanoid pathway is responsible for the synthesis of numerous compounds important for plant growth and responses to the environment. In the first committed step of phenylpropanoid biosynthesis, the enzyme phenylalanine ammonia-lyase (PAL) deaminates L-phenylalanine into trans-cinnamic acid that is then converted into p-coumaric acid by cinnamate-4-hydroxylase (C4H). Recent studies showed that the Kelch repeat F-box (KFB) protein family of ubiquitin ligases control phenylpropanoid biosynthesis by promoting the proteolysis of PAL. However, this ubiquitin ligase family, alternatively named Kiss Me Deadly (KMD), was also implicated in cytokinin signaling as it was shown to promote the degradation of type-B ARRs, including the key response activator ARR1. Considering that ubiquitin ligases typically have narrow target specificity, this dual targeting of structurally and functionally unrelated proteins appeared unusual. RESULTS: Here we show that the KFBs indeed target PAL but not ARR1. Moreover, we show that changes in early phenylpropanoid biosynthesis alter cytokinin sensitivity - as reported earlier - but that the previously documented cytokinin growth response changes are primarily the result of altered auxin signaling. We found that reduced PAL accumulation decreased, whereas the loss of C4H function increased the strength of the auxin response. The combined loss of function of both enzymes led to a decrease in auxin sensitivity, indicating that metabolic events upstream of C4H control auxin sensitivity. This auxin/phenylpropanoid interaction impacts both shoot and root development and revealed an auxin-dependent stimulatory effect of trans-cinnamic acid feeding on leaf expansion and thus biomass accumulation. CONCLUSIONS: Collectively, our results show that auxin-regulated plant growth is fine-tuned by early steps in phenylpropanoid biosynthesis and suggest that metabolites accumulating upstream of the C4H step impact the auxin response mechanism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Fenilpropionatos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Vias Biossintéticas , Cinamatos/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Genes Reporter , Repetição Kelch , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo
10.
Physiol Plant ; 162(3): 274-289, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28940509

RESUMO

Lignification of the plant cell wall could serve as the first line of defense against pathogen attack, but the molecular mechanisms of virulence and disease between oil palm and Ganoderma boninense are poorly understood. This study presents the biochemical, histochemical, enzymology and gene expression evidences of enhanced lignin biosynthesis in young oil palm as a response to G. boninense (GBLS strain). Comparative studies with control (T1), wounded (T2) and infected (T3) oil palm plantlets showed significant accumulation of total lignin content and monolignol derivatives (syringaldehyde and vanillin). These derivatives were deposited on the epidermal cell wall of infected plants. Moreover, substantial differences were detected in the activities of enzyme and relative expressions of genes encoding phenylalanine ammonia lyase (EC 4.3.1.24), cinnamate 4-hydroxylase (EC 1.14.13.11), caffeic acid O-methyltransferase (EC 2.1.1.68) and cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195). These enzymes are key intermediates dedicated to the biosynthesis of lignin monomers, the guaicyl (G), syringyl (S) and ρ-hydroxyphenyl (H) subunits. Results confirmed an early, biphasic and transient positive induction of all gene intermediates, except for CAD enzyme activities. These differences were visualized by anatomical and metabolic changes in the profile of lignin in the oil palm plantlets such as low G lignin, indicating a potential mechanism for enhanced susceptibility toward G. boninense infection.


Assuntos
Arecaceae/genética , Regulação da Expressão Gênica de Plantas , Lignina/biossíntese , Doenças das Plantas/genética , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Arecaceae/metabolismo , Arecaceae/microbiologia , Benzaldeídos/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/microbiologia , Ganoderma/fisiologia , Interações Hospedeiro-Patógeno , Metiltransferases/genética , Metiltransferases/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Doenças das Plantas/microbiologia , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Epiderme Vegetal/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo
11.
Molecules ; 23(12)2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513965

RESUMO

p-Coumaric acid is a commercially available phenolcarboxylic acid with a great number of important applications in the nutraceutical, pharmaceutical, material and chemical industries. p-Coumaric acid has been biosynthesized in some engineered microbes, but the potential of the plant CYP450-involved biosynthetic route has not investigated in Escherichia coli. In the present study, a novel trans-cinnamic acid 4-hydroxylase (C4H) encoding the LauC4H gene was isolated from Lycoris aurea (L' Hér.) Herb via rapid amplification of cDNA ends. Then, N-terminal 28 amino acids of LauC4H were characterized, for the subcellular localization, at the endoplasmic reticulum membrane in protoplasts of Arabidopsis thaliana. In E. coli, LauC4H without the N-terminal membrane anchor region was functionally expressed when fused with the redox partner of A. thaliana cytochrome P450 enzyme (CYP450), and was verified to catalyze the trans-cinnamic acid to p-coumaric acid transformation by whole-cell bioconversion, HPLC detection and LC-MS analysis as well. Further, with phenylalanine ammonia-lyase 1 of A. thaliana, p-coumaric acid was de novo biosynthesized from glucose as the sole carbon source via the phenylalanine route in the recombinant E. coli cells. By regulating the level of intracellular NADPH, the production of p-coumaric acid was dramatically improved by 9.18-fold, and achieved with a titer of 156.09 µM in shake flasks. The recombinant cells harboring functional LauC4H afforded a promising chassis for biological production of p-coumaric acid, even other derivatives, via a plant CYP450-involved pathway.


Assuntos
Escherichia coli/metabolismo , Lycoris/enzimologia , Propionatos/metabolismo , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo , Arabidopsis/genética , Clonagem Molecular , Ácidos Cumáricos , Escherichia coli/genética , Glucose/metabolismo , Lycoris/genética , NADP/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
12.
Zhongguo Zhong Yao Za Zhi ; 43(13): 2670-2675, 2018 Jul.
Artigo em Zh | MEDLINE | ID: mdl-30111015

RESUMO

The study is aimed to explore the effect of different temperature on the content of baicalin and gene expression in the growth of Scutellaria baicalensis. Four culture temperatures were used to establish the callus culture of S. baicalensis under dark conditions for 40 days and once every 5 days. The growth and baicalin contents were determined. 18S RNA was used as a reference gene to analyze the five key factors in baicalin biosynthesis pathway (PAL), cinnamic acid 4-hydroxylase (C4H), chalcone synthase (CHS), ß-glucuronidase (GUS), baicalein-7-O-glucuronosyltransferase (UBGAT) gene expression levels. The results showed that biomass, baicalin content and accumulation increased with the increase of temperature. 25 °C and 30 °C were more suitable for the growth of S. baicalensis. The content and accumulation of baicalin at 25 °C reached the highest level at 30 days, reaching 2.75% and 12.44 mg, respectively. The relative expression levels of C4H, CHS, GUS and UGBAT genes at 15 °C were higher than those at other treatments. The correlation between the relative expression levels of each key enzyme and the content of baicalin was negatively correlated with the increase of incubation temperature. The relative expression levels of PAL, C4H and CHS genes at 25 °C and 30 °C were significantly correlated with the contents of baicalin and reached a highly significant or significant level. Relative low temperature conditions were not conducive to the growth of S. baicalensis and the accumulation of baicalin. The accumulation of baicalin by PAL and C4H in the upstream of the synthetic pathway was significant.


Assuntos
Scutellaria baicalensis , Flavonoides , Temperatura , Transcinamato 4-Mono-Oxigenase
13.
Plant J ; 85(6): 689-706, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26856401

RESUMO

Isoflavonoids are specialized plant metabolites, almost exclusive to legumes, and their biosynthesis forms a branch of the diverse phenylpropanoid pathway. Plant metabolism may be coordinated at many levels, including formation of protein complexes, or 'metabolons', which represent the molecular level of organization. Here, we have confirmed the existence of the long-postulated isoflavonoid metabolon by identifying elements of the complex, their subcellular localizations and their interactions. Isoflavone synthase (IFS) and cinnamate 4-hydroxylase (C4H) have been shown to be tandem P450 enzymes that are anchored in the ER, interacting with soluble enzymes of the phenylpropanoid and isoflavonoid pathways (chalcone synthase, chalcone reductase and chalcone isomerase). The soluble enzymes of these pathways, whether localized to the cytoplasm or nucleus, are tethered to the ER through interaction with these P450s. The complex is also held together by interactions between the soluble elements. We provide evidence for IFS interaction with upstream and non-consecutive enzymes. The existence of such a protein complex suggests a possible mechanism for flux of metabolites into the isoflavonoid pathway. Further, through interaction studies, we identified several candidates that are associated with GmIFS2, an isoform of IFS, in soybean hairy roots. This list provides additional candidates for various biosynthetic and structural elements that are involved in isoflavonoid production. Our interaction studies provide valuable information about isoform specificity among isoflavonoid enzymes, which may guide future engineering of the pathway in legumes or help overcome bottlenecks in heterologous expression.


Assuntos
Retículo Endoplasmático/metabolismo , Glycine max/metabolismo , Isoflavonas/metabolismo , Oxigenases/metabolismo , Transcinamato 4-Mono-Oxigenase/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Citoplasma/metabolismo , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Oxigenases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Mapeamento de Interação de Proteínas/métodos , Isoformas de Proteínas , Glycine max/genética , Transcinamato 4-Mono-Oxigenase/genética
14.
Plant Physiol ; 172(1): 198-220, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27485881

RESUMO

Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing efficiency of lignocellulosic biomass. Both forward and reverse genetic strategies have been used intensively to unravel the molecular mechanism of lignin deposition. As an alternative strategy, we introduce here a forward chemical genetic approach to find candidate inhibitors of lignification. A high-throughput assay to assess lignification in Arabidopsis (Arabidopsis thaliana) seedlings was developed and used to screen a 10-k library of structurally diverse, synthetic molecules. Of the 73 compounds that reduced lignin deposition, 39 that had a major impact were retained and classified into five clusters based on the shift they induced in the phenolic profile of Arabidopsis seedlings. One representative compound of each cluster was selected for further lignin-specific assays, leading to the identification of an aromatic compound that is processed in the plant into two fragments, both having inhibitory activity against lignification. One fragment, p-iodobenzoic acid, was further characterized as a new inhibitor of CINNAMATE 4-HYDROXYLASE, a key enzyme of the phenylpropanoid pathway synthesizing the building blocks of the lignin polymer. As such, we provide proof of concept of this chemical biology approach to screen for inhibitors of lignification and present a broad array of putative inhibitors of lignin deposition for further characterization.


Assuntos
Arabidopsis/metabolismo , Iodobenzoatos/farmacologia , Lignina/metabolismo , Transcinamato 4-Mono-Oxigenase/antagonistas & inibidores , Arabidopsis/citologia , Arabidopsis/genética , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Análise por Conglomerados , Inibidores Enzimáticos/química , Inibidores Enzimáticos/classificação , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Iodobenzoatos/química , Espectrometria de Massas , Estrutura Molecular , Propanóis/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/metabolismo , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo
15.
Plant Physiol ; 170(3): 1358-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26826222

RESUMO

Grass lignins can contain up to 10% to 15% by weight of p-coumaric esters. This acylation is performed on monolignols under the catalysis of p-coumaroyl-coenzyme A monolignol transferase (PMT). To study the impact of p-coumaroylation on lignification, we first introduced the Brachypodium distachyon Bradi2g36910 (BdPMT1) gene into Arabidopsis (Arabidopsis thaliana) under the control of the constitutive maize (Zea mays) ubiquitin promoter. The resulting p-coumaroylation was far lower than that of lignins from mature grass stems and had no impact on stem lignin content. By contrast, introducing either the BdPMT1 or the Bradi1g36980 (BdPMT2) gene into Arabidopsis under the control of the Arabidopsis cinnamate-4-hydroxylase promoter boosted the p-coumaroylation of mature stems up to the grass lignin level (8% to 9% by weight), without any impact on plant development. The analysis of purified lignin fractions and the identification of diagnostic products confirmed that p-coumaric acid was associated with lignins. BdPMT1-driven p-coumaroylation was also obtained in the fah1 (deficient for ferulate 5-hydroxylase) and ccr1g (deficient for cinnamoyl-coenzyme A reductase) lines, albeit to a lower extent. Lignins from BdPMT1-expressing ccr1g lines were also found to be feruloylated. In Arabidopsis mature stems, substantial p-coumaroylation of lignins was achieved at the expense of lignin content and induced lignin structural alterations, with an unexpected increase of lignin units with free phenolic groups. This higher frequency of free phenolic groups in Arabidopsis lignins doubled their solubility in alkali at room temperature. These findings suggest that the formation of alkali-leachable lignin domains rich in free phenolic groups is favored when p-coumaroylated monolignols participate in lignification in a grass in a similar manner.


Assuntos
Arabidopsis/metabolismo , Brachypodium/enzimologia , Lignina/metabolismo , Álcalis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biocombustíveis , Brachypodium/genética , Etanol/metabolismo , Lignina/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Solubilidade , Transcinamato 4-Mono-Oxigenase/genética , Zea mays/genética
16.
Plant Physiol ; 172(2): 874-888, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27506238

RESUMO

The phenylpropanoid 3,4-(methylenedioxy)cinnamic acid (MDCA) is a plant-derived compound first extracted from roots of Asparagus officinalis and further characterized as an allelochemical. Later on, MDCA was identified as an efficient inhibitor of 4-COUMARATE-CoA LIGASE (4CL), a key enzyme of the general phenylpropanoid pathway. By blocking 4CL, MDCA affects the biosynthesis of many important metabolites, which might explain its phytotoxicity. To decipher the molecular basis of the allelochemical activity of MDCA, we evaluated the effect of this compound on Arabidopsis thaliana seedlings. Metabolic profiling revealed that MDCA is converted in planta into piperonylic acid (PA), an inhibitor of CINNAMATE-4-HYDROXYLASE (C4H), the enzyme directly upstream of 4CL. The inhibition of C4H was also reflected in the phenolic profile of MDCA-treated plants. Treatment of in vitro grown plants resulted in an inhibition of primary root growth and a proliferation of lateral and adventitious roots. These observed growth defects were not the consequence of lignin perturbation, but rather the result of disturbing auxin homeostasis. Based on DII-VENUS quantification and direct measurement of cellular auxin transport, we concluded that MDCA disturbs auxin gradients by interfering with auxin efflux. In addition, mass spectrometry was used to show that MDCA triggers auxin biosynthesis, conjugation, and catabolism. A similar shift in auxin homeostasis was found in the c4h mutant ref3-2, indicating that MDCA triggers a cross talk between the phenylpropanoid and auxin biosynthetic pathways independent from the observed auxin efflux inhibition. Altogether, our data provide, to our knowledge, a novel molecular explanation for the phytotoxic properties of MDCA.


Assuntos
Cinamatos/farmacologia , Homeostase/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Lignina/biossíntese , Fenilpropionatos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Benzoatos/metabolismo , Benzoatos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Cinamatos/química , Cinamatos/metabolismo , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Relação Dose-Resposta a Droga , Espectrometria de Massas , Microscopia Confocal , Fenilpropionatos/química , Fenilpropionatos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transcinamato 4-Mono-Oxigenase/antagonistas & inibidores , Transcinamato 4-Mono-Oxigenase/metabolismo
17.
Acta Biol Hung ; 67(4): 379-392, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28000512

RESUMO

Phenylalanine-ammonia-lyase and cinnamate-4-hydroxylase play important role in the phenylpropanoid pathway, which produces many biologically important secondary metabolites participating in normal plant development. Flavonol quercetin is the main representant of these compounds that has been identified in numerous Juglans spp. In this survey, the developmental expression patterns of PAL and C4H genes during in vitro rooting of two walnut cultivars 'Sunland' and 'Howard' was examined by RT-PCR. To understand the potential role in rooting, the changing pattern of endogenous content of quercetin was also analyzed by HPLC. The 'Sunland' with better capacity to root had more quercetin content during the "inductive phase" of rooting than 'Howard'. In each cultivar, the level of PAL transcripts showed the same behavior with the changing patterns of quercetin during root formation of microshoots. The positive correlation between the changes of quercetin and PAL-mRNA indicated that PAL gene may have an immediate effect on flavonoid pathway metabolites including quercetin. Although the behavioral change of C4H expression was similar in both cultivars during root formation (with significantly more level for 'Howard'), it was not coincide with the changes of quercerin concentrations. Our results showed that C4H function is important for the normal development, but its transcriptional regulation does not correlate with quercetin as an efficient phenolic compound for walnut rhizogenesis.


Assuntos
Juglans/genética , Fenilalanina Amônia-Liase/genética , Desenvolvimento Vegetal/genética , Raízes de Plantas/crescimento & desenvolvimento , Quercetina/metabolismo , RNA Mensageiro/metabolismo , Transcinamato 4-Mono-Oxigenase/genética , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Brotos de Planta , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
BMC Genomics ; 16: 561, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26220670

RESUMO

BACKGROUND: Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. RESULTS: A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316 bp. Variety IW had the highest SNP frequency (one SNP every 258 bp) while KP and NDM had similar frequencies (one SNP every 369 bp and 360 bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. CONCLUSIONS: The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango.


Assuntos
Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Mangifera/genética , Aciltransferases/classificação , Aciltransferases/genética , Anacardiaceae/genética , Anacardiaceae/metabolismo , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Etiquetas de Sequências Expressas , Frutas/genética , Frutas/metabolismo , Mangifera/metabolismo , Fenilalanina Amônia-Liase/classificação , Fenilalanina Amônia-Liase/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Transcinamato 4-Mono-Oxigenase/classificação , Transcinamato 4-Mono-Oxigenase/genética , Transcriptoma
19.
Plant Cell ; 24(11): 4465-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23175744

RESUMO

Supramolecular organization of enzymes is proposed to orchestrate metabolic complexity and help channel intermediates in different pathways. Phenylpropanoid metabolism has to direct up to 30% of the carbon fixed by plants to the biosynthesis of lignin precursors. Effective coupling of the enzymes in the pathway thus seems to be required. Subcellular localization, mobility, protein-protein, and protein-membrane interactions of four consecutive enzymes around the main branch point leading to lignin precursors was investigated in leaf tissues of Nicotiana benthamiana and cells of Arabidopsis thaliana. CYP73A5 and CYP98A3, the two Arabidopsis cytochrome P450s (P450s) catalyzing para- and meta-hydroxylations of the phenolic ring of monolignols were found to colocalize in the endoplasmic reticulum (ER) and to form homo- and heteromers. They moved along with the fast remodeling plant ER, but their lateral diffusion on the ER surface was restricted, likely due to association with other ER proteins. The connecting soluble enzyme hydroxycinnamoyltransferase (HCT), was found partially associated with the ER. Both HCT and the 4-coumaroyl-CoA ligase relocalized closer to the membrane upon P450 expression. Fluorescence lifetime imaging microscopy supports P450 colocalization and interaction with the soluble proteins, enhanced by the expression of the partner proteins. Protein relocalization was further enhanced in tissues undergoing wound repair. CYP98A3 was the most effective in driving protein association.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Lignina/metabolismo , Nicotiana/metabolismo , Transcinamato 4-Mono-Oxigenase/metabolismo , Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Coenzima A Ligases/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde , Hidroxibenzoatos/metabolismo , Hidroxilação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas Recombinantes de Fusão , Nicotiana/genética , Transcinamato 4-Mono-Oxigenase/genética , Transgenes
20.
Proc Natl Acad Sci U S A ; 108(52): 21253-8, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22160716

RESUMO

The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (V(max)/k(m)) for any of the complexes is 70-6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex-mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Lignina/biossíntese , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Populus/metabolismo , Transcinamato 4-Mono-Oxigenase/metabolismo , Xilema/metabolismo , Hidrolases de Éster Carboxílico/química , Cromatografia Líquida , Ácidos Cumáricos , Primers do DNA/genética , Hidroxilação , Imunoprecipitação , Cinética , Espectrometria de Massas , Proteínas de Membrana/química , Microscopia Confocal , Estrutura Molecular , Complexos Multiproteicos/química , Fenóis , Fenilpropionatos , Plasmídeos/genética , Propionatos , Transcinamato 4-Mono-Oxigenase/química , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA