Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 895
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 176(3): 564-580.e19, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30580964

RESUMO

There are still gaps in our understanding of the complex processes by which p53 suppresses tumorigenesis. Here we describe a novel role for p53 in suppressing the mevalonate pathway, which is responsible for biosynthesis of cholesterol and nonsterol isoprenoids. p53 blocks activation of SREBP-2, the master transcriptional regulator of this pathway, by transcriptionally inducing the ABCA1 cholesterol transporter gene. A mouse model of liver cancer reveals that downregulation of mevalonate pathway gene expression by p53 occurs in premalignant hepatocytes, when p53 is needed to actively suppress tumorigenesis. Furthermore, pharmacological or RNAi inhibition of the mevalonate pathway restricts the development of murine hepatocellular carcinomas driven by p53 loss. Like p53 loss, ablation of ABCA1 promotes murine liver tumorigenesis and is associated with increased SREBP-2 maturation. Our findings demonstrate that repression of the mevalonate pathway is a crucial component of p53-mediated liver tumor suppression and outline the mechanism by which this occurs.


Assuntos
Ácido Mevalônico/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Linhagem Celular , Colesterol/metabolismo , Feminino , Genes Supressores de Tumor , Células HCT116 , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Regiões Promotoras Genéticas , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Terpenos/metabolismo
2.
Cell ; 169(7): 1228-1239.e10, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28602350

RESUMO

ABCA1, an ATP-binding cassette (ABC) subfamily A exporter, mediates the cellular efflux of phospholipids and cholesterol to the extracellular acceptor apolipoprotein A-I (apoA-I) for generation of nascent high-density lipoprotein (HDL). Mutations of human ABCA1 are associated with Tangier disease and familial HDL deficiency. Here, we report the cryo-EM structure of human ABCA1 with nominal resolutions of 4.1 Å for the overall structure and 3.9 Å for the massive extracellular domain. The nucleotide-binding domains (NBDs) display a nucleotide-free state, while the two transmembrane domains (TMDs) contact each other through a narrow interface in the intracellular leaflet of the membrane. In addition to TMDs and NBDs, two extracellular domains of ABCA1 enclose an elongated hydrophobic tunnel. Structural mapping of dozens of disease-related mutations allows potential interpretation of their diverse pathogenic mechanisms. Structural-based analysis suggests a plausible "lateral access" mechanism for ABCA1-mediated lipid export that may be distinct from the conventional alternating-access paradigm.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Domínios Proteicos , Alinhamento de Sequência
3.
J Biol Chem ; 300(5): 107224, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537695

RESUMO

Impaired cholesterol efflux and/or uptake can influence arterial lipid accumulation leading to atherosclerosis. Here, we report that tripartite motif-containing protein 13 (TRIM13), a RING-type E3 ubiquitin ligase, plays a role in arterial lipid accumulation leading to atherosclerosis. Using molecular approaches and KO mouse model, we found that TRIM13 expression was induced both in the aorta and peritoneal macrophages (pMφ) of ApoE-/- mice in response to Western diet (WD) in vivo. Furthermore, proatherogenic cytokine interleukin-1ß also induced TRIM13 expression both in pMφ and vascular smooth muscle cells. Furthermore, we found that TRIM13 via ubiquitination and degradation of liver X receptor (LXR)α/ß downregulates the expression of their target genes ABCA1/G1 and thereby inhibits cholesterol efflux. In addition, TRIM13 by ubiquitinating and degrading suppressor of cytokine signaling 1/3 (SOCS1/3) mediates signal transducer and activator of transcription 1 (STAT1) activation, CD36 expression, and foam cell formation. In line with these observations, genetic deletion of TRIM13 by rescuing cholesterol efflux and inhibiting foam cell formation protects against diet-induced atherosclerosis. We also found that while TRIM13 and CD36 levels were increased, LXRα/ß, ABCA1/G1, and SOCS3 levels were decreased both in Mφ and smooth muscle cells of stenotic human coronary arteries as compared to nonstenotic arteries. More intriguingly, the expression levels of TRIM13 and its downstream signaling molecules were correlated with the severity of stenotic lesions. Together, these observations reveal for the first time that TRIM13 plays a crucial role in diet-induced atherosclerosis, and that it could be a potential drug target against this vascular lesion.


Assuntos
Aterosclerose , Colesterol , Células Espumosas , Lipoproteínas LDL , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Animais , Humanos , Masculino , Camundongos , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Colesterol/metabolismo , Dieta Ocidental/efeitos adversos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patologia , Lipoproteínas LDL/metabolismo , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Camundongos Knockout para ApoE , Células RAW 264.7 , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
4.
Circulation ; 149(10): 774-787, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38018436

RESUMO

BACKGROUND: Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. METHODS: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. RESULTS: We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometric analysis of chemically cross-linked peptides and molecular dynamics simulations of APOA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs (like reconstituted HDLs) are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. CONCLUSIONS: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of APOA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL.


Assuntos
Apolipoproteína A-I , Doenças Cardiovasculares , Humanos , Apolipoproteína A-I/metabolismo , Doenças Cardiovasculares/metabolismo , Lipoproteínas HDL/metabolismo , Colesterol , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Macrófagos/metabolismo , HDL-Colesterol
5.
Circ Res ; 132(1): e22-e42, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36444722

RESUMO

BACKGROUND: Excess cholesterol accumulation in lesional macrophages elicits complex responses in atherosclerosis. Epsins, a family of endocytic adaptors, fuel the progression of atherosclerosis; however, the underlying mechanism and therapeutic potential of targeting Epsins remains unknown. In this study, we determined the role of Epsins in macrophage-mediated metabolic regulation. We then developed an innovative method to therapeutically target macrophage Epsins with specially designed S2P-conjugated lipid nanoparticles, which encapsulate small-interfering RNAs to suppress Epsins. METHODS: We used single-cell RNA sequencing with our newly developed algorithm MEBOCOST (Metabolite-mediated Cell Communication Modeling by Single Cell Transcriptome) to study cell-cell communications mediated by metabolites from sender cells and sensor proteins on receiver cells. Biomedical, cellular, and molecular approaches were utilized to investigate the role of macrophage Epsins in regulating lipid metabolism and transport. We performed this study using myeloid-specific Epsin double knockout (LysM-DKO) mice and mice with a genetic reduction of ABCG1 (ATP-binding cassette subfamily G member 1; LysM-DKO-ABCG1fl/+). The nanoparticles targeting lesional macrophages were developed to encapsulate interfering RNAs to treat atherosclerosis. RESULTS: We revealed that Epsins regulate lipid metabolism and transport in atherosclerotic macrophages. Inhibiting Epsins by nanotherapy halts inflammation and accelerates atheroma resolution. Harnessing lesional macrophage-specific nanoparticle delivery of Epsin small-interfering RNAs, we showed that silencing of macrophage Epsins diminished atherosclerotic plaque size and promoted plaque regression. Mechanistically, we demonstrated that Epsins bound to CD36 to facilitate lipid uptake by enhancing CD36 endocytosis and recycling. Conversely, Epsins promoted ABCG1 degradation via lysosomes and hampered ABCG1-mediated cholesterol efflux and reverse cholesterol transport. In a LysM-DKO-ABCG1fl/+ mouse model, enhanced cholesterol efflux and reverse transport due to Epsin deficiency was suppressed by the reduction of ABCG1. CONCLUSIONS: Our findings suggest that targeting Epsins in lesional macrophages may offer therapeutic benefits for advanced atherosclerosis by reducing CD36-mediated lipid uptake and increasing ABCG1-mediated cholesterol efflux.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo
6.
Biochem Biophys Res Commun ; 712-713: 149955, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640737

RESUMO

We previously demonstrated a positive relation of secretory phospholipase A2 group IIA (sPLA2-IIA) with circulating high-density lipoprotein cholesterol (HDL-C) in patients with coronary artery disease, and sPLA2-IIA increased cholesterol efflux in THP-1 cells through peroxisome proliferator-activated receptor-γ (PPAR-γ)/liver X receptor α/ATP-binding cassette transporter A1 (ABCA1) signaling pathway. The aim of the present study was to examine the role of sPLA2-IIA over-expression on lipid profile in a transgenic mouse model. Fifteen apoE-/- and C57BL/7 female mice received bone marrow transplantation from transgenic SPLA2-IIA mice, and treated with specific PPAR-γ inhibitor GW9662. High fat diet was given after one week of bone marrow transplantation, and animals were sacrificed after twelve weeks. Immunohistochemical staining showed over-expression of sPLA2-IIA protein in the lung and spleen. The circulating level of HDL-C, but not that of low-density lipoprotein cholesterol (LDL-C), total cholesterol, or total triglyceride, was increased by sPLA2-IIA over-expression, and was subsequently reversed by GW9662 treatment. Over-expression of sPLA2-IIA resulted in augmented expression of cholesterol transporter ABCA1 at mRNA level in the aortas, and at protein level in macrophages, co-localized with macrophage specific antigen CD68. GW9662 exerted potent inhibitory effects on sPLA2-IIA-induced ABCA1 expression. Conclusively, we demonstrated the effects of sPLA2-IIA on circulating HDL-C level and the expression of ABCA1, possibly through regulation of PPAR-γ signaling in transgenic mouse model, that is in concert with the conditions in patients with coronary artery disease.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Molécula CD68 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Animais , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Feminino , Camundongos , Fosfolipases A2 do Grupo II/metabolismo , Fosfolipases A2 do Grupo II/genética , PPAR gama/metabolismo , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Baço/metabolismo , Transplante de Medula Óssea , Humanos , Lipídeos/sangue
7.
Brain Behav Immun ; 119: 431-453, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636566

RESUMO

Spinal cord injury (SCI) triggers a complex cascade of events, including myelin loss, neuronal damage, neuroinflammation, and the accumulation of damaged cells and debris at the injury site. Infiltrating bone marrow derived macrophages (BMDMϕ) migrate to the epicenter of the SCI lesion, where they engulf cell debris including abundant myelin debris to become pro-inflammatory foamy macrophages (foamy Mϕ), participate neuroinflammation, and facilitate the progression of SCI. This study aimed to elucidate the cellular and molecular mechanisms underlying the functional changes in foamy Mϕ and their potential implications for SCI. Contusion at T10 level of the spinal cord was induced using a New York University (NYU) impactor (5 g rod from a height of 6.25 mm) in male mice. ABCA1, an ATP-binding cassette transporter expressed by Mϕ, plays a crucial role in lipid efflux from foamy cells. We observed that foamy Mϕ lacking ABCA1 exhibited increased lipid accumulation and a higher presence of lipid-accumulated foamy Mϕ as well as elevated pro-inflammatory response in vitro and in injured spinal cord. We also found that both genetic and pharmacological enhancement of ABCA1 expression accelerated lipid efflux from foamy Mϕ, reduced lipid accumulation and inhibited the pro-inflammatory response of foamy Mϕ, and accelerated clearance of cell debris and necrotic cells, which resulted in functional recovery. Our study highlights the importance of understanding the pathologic role of foamy Mϕ in SCI progression and the potential of ABCA1 as a therapeutic target for modulating the inflammatory response, promoting lipid metabolism, and facilitating functional recovery in SCI.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Macrófagos , Traumatismos da Medula Espinal , Animais , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Traumatismos da Medula Espinal/metabolismo , Camundongos , Masculino , Macrófagos/metabolismo , Células Espumosas/metabolismo , Camundongos Endogâmicos C57BL , Medula Espinal/metabolismo , Camundongos Knockout , Modelos Animais de Doenças
8.
Circ Res ; 131(1): 42-58, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35611698

RESUMO

BACKGROUND: A significant burden of atherosclerotic disease is driven by inflammation. Recently, microRNAs (miRNAs) have emerged as important factors driving and protecting from atherosclerosis. miR-223 regulates cholesterol metabolism and inflammation via targeting both cholesterol biosynthesis pathway and NFkB signaling pathways; however, its role in atherosclerosis has not been investigated. We hypothesize that miR-223 globally regulates core inflammatory pathways in macrophages in response to inflammatory and atherogenic stimuli thus limiting the progression of atherosclerosis. METHODS AND RESULTS: Loss of miR-223 in macrophages decreases Abca1 gene and protein expression as well as cholesterol efflux to apoA1 (Apolipoprotein A1) and enhances proinflammatory gene expression. In contrast, overexpression of miR-223 promotes the efflux of cholesterol and macrophage polarization toward an anti-inflammatory phenotype. These beneficial effects of miR-223 are dependent on its target gene, the transcription factor Sp3. Consistent with the antiatherogenic effects of miR-223 in vitro, mice receiving miR223-/- bone marrow exhibit increased plaque size, lipid content, and circulating inflammatory cytokines (ie, IL-1ß). Deficiency of miR-223 in bone marrow-derived cells also results in an increase in circulating pro-atherogenic cells (total monocytes and neutrophils) compared with control mice. Furthermore, the expression of miR-223 target gene (Sp3) and pro-inflammatory marker (Il-6) are enhanced whereas the expression of Abca1 and anti-inflammatory marker (Retnla) are reduced in aortic arches from mice lacking miR-223 in bone marrow-derived cells. In mice fed a high-cholesterol diet and in humans with unstable carotid atherosclerosis, the expression of miR-223 is increased. To further understand the molecular mechanisms underlying the effect of miR-223 on atherosclerosis in vivo, we characterized global RNA translation profile of macrophages isolated from mice receiving wild-type or miR223-/- bone marrow. Using ribosome profiling, we reveal a notable upregulation of inflammatory signaling and lipid metabolism at the translation level but less significant at the transcription level. Analysis of upregulated genes at the translation level reveal an enrichment of miR-223-binding sites, confirming that miR-223 exerts significant changes in target genes in atherogenic macrophages via altering their translation. CONCLUSIONS: Our study demonstrates that miR-223 can protect against atherosclerosis by acting as a global regulator of RNA translation of cholesterol efflux and inflammation pathways.


Assuntos
Aterosclerose , Macrófagos , MicroRNAs , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo
9.
Circ Res ; 131(5): 404-420, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35893593

RESUMO

BACKGROUND: Accumulating evidence has shown that disorders in the gut microbiota and derived metabolites affect the development of atherosclerotic cardiovascular disease (ASCVD). However, which and how specific gut microbial metabolites contribute to the progression of atherosclerosis and the clinical relevance of their alterations remain unclear. METHODS: We performed integrated microbiome-metabolome analysis of 30 patients with coronary artery disease (CAD) and 30 age- and sex-matched healthy controls to identify CAD-associated microbial metabolites, which were then assessed in an independent population of patients with ASCVD and controls (n=256). We further investigate the effect of CAD-associated microbial metabolites on atherosclerosis and the mechanisms of the action. RESULTS: Indole-3-propionic acid (IPA), a solely microbially derived tryptophan metabolite, was the most downregulated metabolite in patients with CAD. Circulating IPA was then shown in an independent population to be associated with risk of prevalent ASCVD and correlated with the ASCVD severity. Dietary IPA supplementation alleviates atherosclerotic plaque development in ApoE-/- mice. In murine- and human-derived macrophages, administration of IPA promoted cholesterol efflux from macrophages to ApoA-I through an undescribed miR-142-5p/ABCA1 (ATP-binding cassette transporter A1) signaling pathway. Further in vivo studies demonstrated that IPA facilitates macrophage reverse cholesterol transport, correlating with the regulation of miR-142-5p/ABCA1 pathway, whereas reduced IPA production contributed to the aberrant overexpression of miR-142-5p in macrophages and accelerated the progression of atherosclerosis. Moreover, the miR-142-5p/ABCA1/reverse cholesterol transport axis in macrophages were dysregulated in patients with CAD, and correlated with the changes in circulating IPA levels. CONCLUSIONS: Our study identify a previously unknown link between specific gut microbiota-derived tryptophan metabolite and ASCVD. The microbial metabolite IPA/miR-142-5p/ABCA1 pathway may represent a promising therapeutic target for ASCVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , MicroRNAs , Placa Aterosclerótica , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aterosclerose/metabolismo , Colesterol/metabolismo , Humanos , Indóis/farmacologia , Camundongos , MicroRNAs/metabolismo , Placa Aterosclerótica/metabolismo , Propionatos , Triptofano
10.
Mol Biol Rep ; 51(1): 657, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740636

RESUMO

BACKGROUND: Mycobacterium tuberculosis (MTB) is the causative organism of tuberculosis. Cholesterol is a crucial carbon source required for the survival of MTB in host cells. Transcription factor NR1H3 along with its important target genes ABCA1 and ApoE play important role in removal of extra cholesterol from cells. Changes in the gene expression of NR1H3, ABCA1 and ApoE can affect cholesterol homeostasis and thus the survival of MTB in host cells.Therefore, the present study was designed to analyze the mRNA expression of NR1H3, ABCA1 and ApoE in pulmonary TB (PTB) patients from the population of Punjab, India. METHODS AND RESULTS: In this study, mRNA expression of the transcription factor NR1H3 and its target genes ABCA1 and ApoE was analyzed in 89 subjects, including 41 PTB patients and 48 healthy controls (HCs) by real-time quantitative PCR. It was found that the mRNA expression of both NR1H3 and ABCA1 genes was significantly lower in TB patients than in HCs (p < 0.001). Even after sex-wise stratification of the subjects, mRNA expression of NR1H3 and ABCA1 was found to be down-regulated in both male and female TB patients. No significant difference was observed in expression of ApoE (p = 0.98). CONCLUSIONS: The present study found that the mRNA expression of NR1H3 and ABCA1 is down-regulated in TB patients from Punjab state of India.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , RNA Mensageiro , Tuberculose Pulmonar , Humanos , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Feminino , Masculino , Índia , Adulto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pessoa de Meia-Idade , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Mycobacterium tuberculosis/genética , Estudos de Casos e Controles , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
11.
Exp Cell Res ; 432(1): 113784, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37730144

RESUMO

Atherosclerosis is a persistent inflammatory state that contributes significantly to cardiovascular disease, a primary cause of mortality worldwide. Enhanced lipid uptake by macrophages and their transformation into foam cells play a key role in the development of atherosclerosis. Recent studies using in vivo mouse models indicated that activation of AMPK has anti-atherosclerotic effects by upregulating the expression of cholesterol efflux transporters in foam cells and promoting cholesterol efflux. However, the pathway downstream of AMPK that contributes to elevated expression of cholesterol efflux transporters remains unclear. In this study, we found that activation of AMPK by AICAR and metformin inhibits foam cell formation via suppression of mTOR in macrophages. Specifically, activation of AMPK indirectly reduced the phosphorylation level of mTOR at Ser2448 and promoted the expression of cholesterol efflux transporters and cholesterol efflux. These inhibitory effects on foam cell formation were counteracted by mTOR activators. Metformin, a more nonspecific AMPK activator than AICAR, appears to inhibit foam cell formation via anti-inflammatory effects in addition to suppression of the mTOR pathway. The results of this study suggest that the development of new drugs targeting AMPK activation and mTOR inhibition may lead to beneficial results in the prevention and treatment of atherosclerosis.


Assuntos
Aterosclerose , Metformina , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Macrófagos/metabolismo , Colesterol/metabolismo , Células Espumosas , Serina-Treonina Quinases TOR/metabolismo , Metformina/farmacologia , Metformina/metabolismo , Aterosclerose/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo
12.
Acta Pharmacol Sin ; 45(5): 1019-1031, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38228909

RESUMO

Podocyte lipotoxicity mediated by impaired cellular cholesterol efflux plays a crucial role in the development of diabetic kidney disease (DKD), and the identification of potential therapeutic targets that regulate podocyte cholesterol homeostasis has clinical significance. Coiled-coil domain containing 92 (CCDC92) is a novel molecule related to metabolic disorders and insulin resistance. However, whether the expression level of CCDC92 is changed in kidney parenchymal cells and the role of CCDC92 in podocytes remain unclear. In this study, we found that Ccdc92 was significantly induced in glomeruli from type 2 diabetic mice, especially in podocytes. Importantly, upregulation of Ccdc92 in glomeruli was positively correlated with an increased urine albumin-to-creatinine ratio (UACR) and podocyte loss. Functionally, podocyte-specific deletion of Ccdc92 attenuated proteinuria, glomerular expansion and podocyte injury in mice with DKD. We further demonstrated that Ccdc92 contributed to lipid accumulation by inhibiting cholesterol efflux, finally promoting podocyte injury. Mechanistically, Ccdc92 promoted the degradation of ABCA1 by regulating PA28α-mediated proteasome activity and then reduced cholesterol efflux. Thus, our studies indicate that Ccdc92 contributes to podocyte injury by regulating the PA28α/ABCA1/cholesterol efflux axis in DKD.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Colesterol , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Camundongos Endogâmicos C57BL , Podócitos , Animais , Podócitos/metabolismo , Podócitos/patologia , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Camundongos , Masculino , Diabetes Mellitus Experimental/metabolismo , Camundongos Knockout , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo
13.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928513

RESUMO

Arterial macrophage cholesterol accumulation and impaired cholesterol efflux lead to foam cell formation and the development of atherosclerosis. Modified lipoproteins interact with toll-like receptors (TLR), causing an increased inflammatory response and altered cholesterol homeostasis. We aimed to determine the effects of TLR antagonists on cholesterol efflux and foam cell formation in human macrophages. Stimulated monocytes were treated with TLR antagonists (MIP2), and the cholesterol efflux transporter expression and foam cell formation were analyzed. The administration of MIP2 attenuated the foam cell formation induced by lipopolysaccharides (LPS) and oxidized low-density lipoproteins (ox-LDL) in stimulated THP-1 cells (p < 0.001). The expression of ATP-binding cassette transporters A (ABCA)-1, ABCG-1, scavenger receptor (SR)-B1, liver X receptor (LXR)-α, and peroxisome proliferator-activated receptor (PPAR)-γ mRNA and proteins were increased (p < 0.001) following MIP2 administration. A concentration-dependent decrease in the phosphorylation of p65, p38, and JNK was also observed following MIP2 administration. Moreover, an inhibition of p65 phosphorylation enhanced the expression of ABCA1, ABCG1, SR-B1, and LXR-α. TLR inhibition promoted the cholesterol efflux pathway by increasing the expression of ABCA-1, ABCG-1, and SR-B1, thereby reducing foam cell formation. Our results suggest a potential role of the p65/NF-kB/LXR-α/ABCA1 axis in TLR-mediated cholesterol homeostasis.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Colesterol , Células Espumosas , Lipoproteínas LDL , Receptores X do Fígado , Receptores Toll-Like , Humanos , Células Espumosas/metabolismo , Células Espumosas/efeitos dos fármacos , Colesterol/metabolismo , Receptores X do Fígado/metabolismo , Receptores Toll-Like/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , PPAR gama/metabolismo , Células THP-1 , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Lipopolissacarídeos/farmacologia , Receptores Depuradores Classe B/metabolismo , Receptores Depuradores Classe B/genética
14.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928163

RESUMO

Obesity is a risk factor for type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). Adipose tissue (AT) extracellular vesicles (EVs) could play a role in obesity and T2DM associated CVD progression via the influence of their specific cargo on gene expression in recipient cells. The aim of this work was to evaluate the effects of AT EVs of patients with obesity with/without T2DM on reverse cholesterol transport (RCT)-related gene expression in human monocyte-derived macrophages (MDMs) from healthy donors. AT EVs were obtained after ex vivo cultivation of visceral and subcutaneous AT (VAT and SAT, respectively). ABCA1, ABCG1, PPARG, LXRß (NR1H2), and LXRα (NR1H3) mRNA levels in MDMs as well as in origine AT were determined by a real-time PCR. T2DM VAT and SAT EVs induced ABCG1 gene expression whereas LXRα and PPARG mRNA levels were simultaneously downregulated. PPARG mRNA levels also decreased in the presence of VAT EVs of obese patients without T2DM. In contrast ABCA1 and LXRß mRNA levels tended to increase with the addition of obese AT EVs. Thus, AT EVs can influence RCT gene expression in MDMs during obesity, and the effects are dependent on T2DM status.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Tecido Adiposo , Colesterol , Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Receptores X do Fígado , Macrófagos , Obesidade , PPAR gama , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Obesidade/metabolismo , Obesidade/genética , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Macrófagos/metabolismo , Colesterol/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Tecido Adiposo/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Feminino , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Masculino , Pessoa de Meia-Idade , Transporte Biológico , Regulação da Expressão Gênica , Adulto , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
15.
Curr Opin Lipidol ; 34(5): 208-213, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37548415

RESUMO

PURPOSE OF REVIEW: ATP-binding cassette transporter A1 (ABCA1) plays a key role in high-density lipoprotein (HDL) biogenesis and cholesterol export from artery wall cells. Recent evidence challenges the generally accepted model for lipid transport by ABCA1, termed the alternating access mechanism, which proposes that phospholipid moves from the inner leaflet to the outer leaflet of the plasma membrane. RECENT FINDINGS: In contrast to the standard model, our computer simulations of ABCA1 indicate that ABCA1 extracts phospholipid from the plasma membrane's outer leaflet. The lipid then diffuses into the interior of ABCA1 to contact a structure termed the 'gateway'. A conformational change opens the gateway and forces the lipid through a ring-shaped domain, the 'annulus orifice', into the base of an elongated hydrophobic tunnel in the transporter's extracellular domain. Engineered mutations in the gateway and annulus strongly inhibited lipid export by ABCA1 without affecting cell-surface expression levels of the transporter, strongly supporting the proposed model. SUMMARY: Our demonstration that ABCA1 extracts lipid from the outer face of the plasma membrane and forces it into an elongated hydrophobic tunnel contrasts with the alternating access model, which flops phospholipid from the membrane's inner leaflet to its outer leaflet. These results suggest that ABCA1 is a phospholipid translocase that transports lipids by a mechanism distinct from that of other ABC transporters.


Assuntos
Lipoproteínas HDL , Fosfolipídeos , Humanos , Lipoproteínas HDL/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transporte Biológico , Fosfolipídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo
16.
J Lipid Res ; 64(6): 100385, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169287

RESUMO

This review considers the hypothesis that a small portion of plasma membrane cholesterol regulates reverse cholesterol transport in coordination with overall cellular homeostasis. It appears that almost all of the plasma membrane cholesterol is held in stoichiometric complexes with bilayer phospholipids. The minor fraction of cholesterol that exceeds the complexation capacity of the phospholipids is called active cholesterol. It has an elevated chemical activity and circulates among the organelles. It also moves down its chemical activity gradient to plasma HDL, facilitated by the activity of ABCA1, ABCG1, and SR-BI. ABCA1 initiates this process by perturbing the organization of the plasma membrane bilayer, thereby priming its phospholipids for translocation to apoA-I to form nascent HDL. The active excess sterol and that activated by ABCA1 itself follow the phospholipids to the nascent HDL. ABCG1 similarly rearranges the bilayer and sends additional active cholesterol to nascent HDL, while SR-BI simply facilitates the equilibration of the active sterol between plasma membranes and plasma proteins. Active cholesterol also flows downhill to cytoplasmic membranes where it serves both as a feedback signal to homeostatic ER proteins and as the substrate for the synthesis of mitochondrial 27-hydroxycholesterol (27HC). 27HC binds the LXR and promotes the expression of the aforementioned transport proteins. 27HC-LXR also activates ABCA1 by competitively displacing its inhibitor, unliganded LXR. § Considerable indirect evidence suggests that active cholesterol serves as both a substrate and a feedback signal for reverse cholesterol transport. Direct tests of this novel hypothesis are proposed.


Assuntos
Colesterol , Lipoproteínas de Alta Densidade Pré-beta , Colesterol/metabolismo , Transporte Biológico , Esteróis , Fosfolipídeos , Transportador 1 de Cassete de Ligação de ATP/metabolismo
17.
J Biol Chem ; 298(11): 102527, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162506

RESUMO

Phospholipids are asymmetrically distributed between the lipid bilayer of plasma membranes in which phosphatidylserine (PtdSer) is confined to the inner leaflet. ATP11A and ATP11C, type IV P-Type ATPases in plasma membranes, flip PtdSer from the outer to the inner leaflet, but involvement of other P4-ATPases is unclear. We herein demonstrated that once PtdSer was exposed on the cell surface of ATP11A-/-ATP11C-/- mouse T cell line (W3), its internalization to the inner leaflet of plasma membranes was negligible at 15 °C. However, ATP11A-/-ATP11C-/- cells internalized the exposed PtdSer at 37 °C, a temperature at which trafficking of intracellular membranes was active. In addition to ATP11A and 11C, W3 cells expressed ATP8A1, 8B2, 8B4, 9A, 9B, and 11B, with ATP8A1 and ATP11B being present at recycling endosomes. Cells deficient in four P4-ATPases (ATP8A1, 11A, 11B, and 11C) (QKO) did not constitutively expose PtdSer on the cell surface but lost the ability to re-establish PtdSer asymmetry within 1 hour, even at 37 °C. The expression of ATP11A or ATP11C conferred QKO cells with the ability to rapidly re-establish PtdSer asymmetry at 15 °C and 37 °C, while cells expressing ATP8A1 or ATP11B required a temperature of 37 °C to achieve this function, and a dynamin inhibitor blocked this process. These results revealed that mammalian cells are equipped with two independent mechanisms to re-establish its asymmetry: the first is a rapid process involving plasma membrane flippases, ATP11A and ATP11C, while the other is mediated by ATP8A1 and ATP11B, which require an endocytosis process.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , ATPases do Tipo-P , Fosfatidilserinas , Proteínas de Transferência de Fosfolipídeos , Animais , Camundongos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , ATPases do Tipo-P/genética , ATPases do Tipo-P/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Técnicas de Inativação de Genes , Linfócitos T
18.
Biochem Biophys Res Commun ; 644: 149-154, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36652766

RESUMO

Doxorubicin (DOX) is extensively used for the treatment of kinds of cancers, and cardiovascular toxicity is one of the side effects. However, it is unclear whether DOX causes impairment of cardiac function by promoting atherosclerosis. Thus, we investigated the role of DOX in regulating the lipid deposition of macrophages and its molecular mechanism. RAW 264.7 cell line was stimulated with DOX in the presence or absence of low-density lipoprotein (LDL). We found that DOX increased miR-33 and reduced ATP binding cassette transporter A1 (ABCA1) protein. Moreover, cholesterol efflux was suppressed by DOX, which was more efficient under a high-cholesterol condition. After transfecting mimics or inhibitors of miR-33 into cells, ABCA1 protein was respectively decreased and increased, and intracellular lipid accumulation was correspondingly regulated. Overall, DOX suppresses the expression of ABCA1 protein by upregulating miR-33, promoting an intracellular lipid deposition in macrophages, which is a sign of early atherosclerosis. This provides new insights for clinical observation and evaluation of the side effects of DOX.


Assuntos
Aterosclerose , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Aterosclerose/metabolismo , Doxorrubicina/farmacologia
20.
Cell Biol Int ; 47(7): 1151-1160, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36934420

RESUMO

Head and neck cancer (HNC), which is among the deadliest malignancies, is the seventh most common cancer worldwide. How cholesterol homeostasis is linked to human cancers has long been a source of curiosity. One of the few proteins that are involved in cholesterol homeostasis is ATP-binding cassette transporter A1 (ABCA1), which is broadly expressed in numerous tissues. ABCA1 increases cholesterol efflux, inhibits cholesterol deposition in cells, and modulates anticancer activities. Therefore, it is not surprising that decreased ABCA1 activity and altered cholesterol homeostasis are implicated in the patho-physiology of HNCs. In this review, we focus on the role of cholesterol metabolism in the patho-physiology and progression of HNCs, with an emphasis on biological effects of ABCA1 transporters. We also review therapeutic approaches targeting cholesterol metabolism, as well as how combining such approaches with existing anticancer treatments may have synergistic effects and therefore open up new therapeutic avenues.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Neoplasias de Cabeça e Pescoço , Humanos , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA