Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Brain Res ; 242(1): 109-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37973625

RESUMO

Accumulating evidence indicates that microglia-mediated neuroinflammation in the hippocampus contributes to the development of perioperative neurocognitive disorder (PND). P38MAPK, a point of convergence for different signaling processes involved in inflammation, can be activated by various stresses. This study aims to investigate the role of the P38MAPK/ATF2 signaling pathway in the development of PND in mice. Aged C57BL/6 mice were subjected to tibial fracture surgery under isoflurane anesthesia to establish a PND animal model. The open field test was used to evaluate the locomotor activity of the mice. Neurocognitive function was assessed with the Morris water maze (MWM) and fear conditioning test (FCT) on postoperative days 1, 3 and 7. The mice exhibited cognitive impairment accompanied by increased expression of proinflammatory factors (IL-1ß, TNF-α), proapoptotic molecules (caspase-3, bax) and microglial activation in the hippocampus 1, 3 and 7 days after surgery. Treatment with SB239063 (a P38MAPK inhibitor) decreased the expression of proinflammatory factors, proapoptotic molecules and Iba-1 in the CA1 region of the hippocampus. The number of surviving neurons was significantly increased. Inhibition of the P38MAPK/ATF2 signaling pathway attenuates hippocampal neuroinflammation and neuronal apoptosis in aged mice with PND, thus improving the perioperative cognitive function of the mice.


Assuntos
Disfunção Cognitiva , Doenças Neuroinflamatórias , Animais , Camundongos , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Transtornos Neurocognitivos/metabolismo , Transdução de Sinais/fisiologia , Proteína Quinase 14 Ativada por Mitógeno
2.
J Integr Neurosci ; 23(2): 38, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38419449

RESUMO

Perioperative neurocognitive disorders (PND) are a cognitive impairment that occurs after anesthesia, especially in elderly patients and significantly affects their quality of life. The hippocampus, as a critical region for cognitive function and an important location in PND research, has recently attracted increasing attention. However, in the hippocampus the impact of anesthesia and its underlying mechanisms remain unclear. This review focuses on investigation of the effects of anesthesia on the hippocampal dopamine (DA) system and explores its potential association with PND. Through comprehensive review of existing studies, it was found that anesthesia affects the hippocampus through various pathways involved in metabolism, synaptic plasticity and oxygenation. Anesthesia may also influence the DA neurotransmitter system in the brain which plays a role in emotions, rewards, learning and memory functions. Specifically, anesthesia may participate in the pathogenesis of PND by affecting the DA system within the hippocampus. Future studies should explore the molecular mechanisms of these effects through techniques such as neuroimaging to study real-time effects to improve animal models to better simulate clinical observations. For clinical application, it is recommended that physicians exercise caution when selecting and managing anesthetic drugs by adopting comprehensive cognitive assessment methods to reduce post-anesthesia cognitive risk. Overall, this review provides a better understanding of the relationship between the hippocampal DA system and perioperative neurocognitive function and provides valuable guidance for prevention and treatment strategies for PND.


Assuntos
Disfunção Cognitiva , Dopamina , Animais , Humanos , Idoso , Dopamina/metabolismo , Dopamina/farmacologia , Qualidade de Vida , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/patologia , Hipocampo/metabolismo
3.
J Integr Neurosci ; 23(6): 123, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38940081

RESUMO

OBJECTIVE: Perioperative neurocognitive disorders (PND) are a group of prevalent neurological complications that often occur in elderly individuals following major or emergency surgical procedures. The etiologies are not fully understood. This study endeavored to investigate novel targets and prediction methods for the occurrence of PND. METHODS: A total of 229 elderly patients diagnosed with prostatic hyperplasia who underwent transurethral resection of the prostate (TURP) combined with spinal cord and epidural analgesia were included in this study. The patients were divided into two groups, the PND group and non-PND group, based on the Z-score method. According to the principle of maintaining consistency between preoperative and intraoperative conditions, three patients from each group were randomly chosen for serum sample collection. isobaric tags for relative and absolute quantification (iTRAQ) proteomics technology was employed to analyze and identify the proteins that exhibited differential expression in the serum samples from the two groups. Bioinformatics analysis was performed on the proteins that exhibited differential expression. RESULTS: Among the 1101 serum proteins analyzed in the PND and non-PND groups, eight differentially expressed proteins were identified in PND patients. Of these, six proteins showed up-regulation, while two proteins showed down-regulation. Further bioinformatics analysis of the proteins that exhibited differential expression revealed their predominant involvement in cellular biological processes, cellular component formation, as well as endocytosis and phagocytosis Additionally, these proteins were found to possess the RING domain of E3 ubiquitin ligase. CONCLUSION: The iTRAQ proteomics technique was employed to analyze the variation in protein expression in serum samples from patients with PND and those without PND. This study successfully identified eight proteins that exhibited differential expression levels between the two groups. Bioinformatics analysis indicates that proteins exhibiting differential expression are primarily implicated in the biological processes associated with microtubules. Investigating the microtubule formation process as it relates to neuroplasticity and synaptic formation may offer valuable insights for enhancing our comprehension and potential prevention of PND. CLINICAL TRIAL REGISTRATION: Registered (ChiCTR2000028836). Date (20190306).


Assuntos
Ressecção Transuretral da Próstata , Humanos , Masculino , Idoso , Ressecção Transuretral da Próstata/efeitos adversos , Proteômica , Hiperplasia Prostática/cirurgia , Hiperplasia Prostática/sangue , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/sangue , Transtornos Neurocognitivos/metabolismo , Complicações Cognitivas Pós-Operatórias/etiologia , Complicações Cognitivas Pós-Operatórias/sangue , Período Perioperatório , Idoso de 80 Anos ou mais , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análise , Biologia Computacional
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731913

RESUMO

Despite combined antiretroviral therapy (cART) limiting HIV replication to undetectable levels in the blood, people living with HIV continue to experience HIV-associated neurocognitive disorder (HAND). HAND is associated with neurocognitive impairment, including motor impairment, and memory loss. HIV has been detected in the brain within 8 days of estimated exposure and the mechanisms for this early entry are being actively studied. Once having entered into the central nervous system (CNS), HIV degrades the blood-brain barrier through the production of its gp120 and Tat proteins. These proteins are directly toxic to endothelial cells and neurons, and propagate inflammatory cytokines by the activation of immune cells and dysregulation of tight junction proteins. The BBB breakdown is associated with the progression of neurocognitive disease. One of the main hurdles for treatment for HAND is the latent pool of cells, which are insensitive to cART and prolong inflammation by harboring the provirus in long-lived cells that can reactivate, causing damage. Multiple strategies are being studied to combat the latent pool and HAND; however, clinically, these approaches have been insufficient and require further revisions. The goal of this paper is to aggregate the known mechanisms and challenges associated with HAND.


Assuntos
Barreira Hematoencefálica , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Infecções por HIV/complicações , Infecções por HIV/virologia , Infecções por HIV/patologia , Infecções por HIV/metabolismo , Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/patologia , HIV-1 , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/patologia , Animais
5.
J Neuroinflammation ; 20(1): 87, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997969

RESUMO

Despite extensive astrocyte activation in patients suffering from HIV-associated neurocognitive disorders (HAND), little is known about the contribution of astrocytes to HAND neuropathology. Here, we report that the robust activation of neurotoxic astrocytes (A1 astrocytes) in the CNS promotes neuron damage and cognitive deficits in HIV-1 gp120 transgenic mice. Notably, knockout of α7 nicotinic acetylcholine receptors (α7nAChR) blunted A1 astrocyte responses, ultimately facilitating neuronal and cognitive improvement in the gp120tg mice. Furthermore, we provide evidence that Kynurenic acid (KYNA), a tryptophan metabolite with α7nAChR inhibitory properties, attenuates gp120-induced A1 astrocyte formation through the blockade of α7nAChR/JAK2/STAT3 signaling activation. Meanwhile, compared with gp120tg mice, mice fed with tryptophan showed dramatic improvement in cognitive performance, which was related to the inhibition of A1 astrocyte responses. These initial and determinant findings mark a turning point in our understanding of the role of α7nAChR in gp120-mediated A1 astrocyte activation, opening up new opportunities to control neurotoxic astrocyte generation through KYNA and tryptophan administration.


Assuntos
Infecções por HIV , Ácido Cinurênico , Camundongos , Animais , Ácido Cinurênico/farmacologia , Ácido Cinurênico/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Astrócitos/metabolismo , Triptofano/metabolismo , HIV/metabolismo , Camundongos Transgênicos , Transtornos Neurocognitivos/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo
6.
Neurochem Res ; 48(12): 3512-3524, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37470907

RESUMO

Perioperative neurocognitive disorder (PND) is a common complication of surgery and anesthesia, especially among older patients. Microglial activation plays a crucial role in the occurrence and development of PND and transforming growth factor beta 1 (TGF-ß1) can regulate microglial homeostasis. In the present study, abdominal surgery was performed on 12-14 months-old C57BL/6 mice to establish a PND model. The expression of TGF-ß1, TGF-ß receptor 1, TGF-ß receptor 2, and phosphor-smad2/smad3 (psmad2/smad3) was assessed after anesthesia and surgery. Additionally, we examined changes in microglial activation, morphology, and polarization, as well as neuroinflammation and dendritic spine density in the hippocampus. Behavioral tests, including the Morris water maze and open field tests, were used to examine cognitive function, exploratory locomotion, and emotions. We observed decreased TGF-ß1 expression after surgery and anesthesia. Intranasally administered exogenous TGF-ß1 increased psmad2/smad3 colocalization with microglia positive for ionized calcium-binding adaptor molecule 1. TGF-ß1 treatment attenuated microglial activation, reduced microglial phagocytosis, and reduced surgery- and anesthesia-induced changes in microglial morphology. Compared with the surgery group, TGF-ß1 treatment decreased M1 microglial polarization and increased M2 microglial polarization. Additionally, surgery- and anesthesia-induced increase in interleukin 1 beta and tumor necrosis factor-alpha levels was ameliorated by TGF-ß1 treatment at postoperative day 3. TGF-ß1 also ameliorated cognitive function after surgery and anesthesia as well as rescue dendritic spine loss. In conclusion, surgery and anesthesia induced decrease in TGF-ß1 levels in older mice, which may contribute to PND development; however, TGF-ß1 ameliorated microglial activation and cognitive dysfunction in PND mice.


Assuntos
Microglia , Fator de Crescimento Transformador beta1 , Humanos , Camundongos , Animais , Lactente , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Microglia/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transtornos Neurocognitivos/metabolismo , Fator de Crescimento Transformador beta
7.
Neurochem Res ; 48(10): 2983-2995, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37294392

RESUMO

Perioperative neurocognitive disorders (PND) increases postoperative dementia and mortality in patients and has no effective treatment. Although the detailed pathogenesis of PND is still elusive, a large amount of evidence suggests that damaged mitochondria may play an important role in the pathogenesis of PND. A healthy mitochondrial pool not only provides energy for neuronal metabolism but also maintains neuronal activity through other mitochondrial functions. Therefore, exploring the abnormal mitochondrial function in PND is beneficial for finding promising therapeutic targets for this disease. This article summarizes the research advances of mitochondrial energy metabolism disorder, inflammatory response and oxidative stress, mitochondrial quality control, mitochondria-associated endoplasmic reticulum membranes, and cell death in the pathogenesis of PND, and briefly describes the application of mitochondria-targeted therapies in PND.


Assuntos
Doenças Mitocondriais , Transtornos Neurocognitivos , Humanos , Transtornos Neurocognitivos/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/patologia , Estresse Oxidativo , Neurônios/metabolismo
8.
PLoS Biol ; 18(5): e3000660, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453744

RESUMO

Increased life expectancy of patients diagnosed with HIV in the current era of antiretroviral therapy is unfortunately accompanied with the prevalence of HIV-associated neurocognitive disorders (HANDs) and risk of comorbidities such as Alzheimer-like pathology. HIV-1 transactivator of transcription (Tat) protein has been shown to induce the production of toxic neuronal amyloid protein and also enhance neurotoxicity. The contribution of astrocytes in Tat-mediated amyloidosis remains an enigma. We report here, in simian immunodeficiency virus (SIV)+ rhesus macaques and patients diagnosed with HIV, brain region-specific up-regulation of amyloid precursor protein (APP) and Aß (40 and 42) in astrocytes. In addition, we find increased expression of ß-site cleaving enzyme (BACE1), APP, and Aß in human primary astrocytes (HPAs) exposed to Tat. Mechanisms involved up-regulation of hypoxia-inducible factor (HIF-1α), its translocation and binding to the long noncoding RNA (lncRNA) BACE1-antisense transcript (BACE1-AS), resulting, in turn, in the formation of the BACE1-AS/BACE1 RNA complex, subsequently leading to increased BACE1 protein, and activity and generation of Aß-42. Gene silencing approaches confirmed the regulatory role of HIF-1α in BACE1-AS/BACE1 in Tat-mediated amyloidosis. This is the first report implicating the role of the HIF-1α/lncRNABACE1-AS/BACE1 axis in Tat-mediated induction of astrocytic amyloidosis, which could be targeted as adjunctive therapies for HAND-associated Alzheimer-like comorbidity.


Assuntos
Amiloidose/virologia , Astrócitos/metabolismo , Infecções por HIV/complicações , Transtornos Neurocognitivos/virologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Infecções por HIV/metabolismo , HIV-1 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macaca mulatta , Pessoa de Meia-Idade , Transtornos Neurocognitivos/metabolismo , Fragmentos de Peptídeos/metabolismo , RNA Longo não Codificante/metabolismo , Regulação para Cima
9.
Int J Mol Sci ; 24(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38139395

RESUMO

During the antiretroviral era, individuals living with HIV continue to experience milder forms of HIV-associated neurocognitive disorder (HAND). Viral proteins, including Tat, play a pivotal role in the observed alterations within the central nervous system (CNS), with mitochondrial dysfunction emerging as a prominent hallmark. As a result, our objective was to examine the expression of genes associated with mitophagy and mitochondrial biogenesis in the brain exposed to the HIV-1 Tat protein. We achieved this by performing bilateral stereotaxic injections of 100 ng of HIV-1 Tat into the hippocampus of Sprague-Dawley rats, followed by immunoneuromagnetic cell isolation. Subsequently, we assessed the gene expression of Ppargc1a, Pink1, and Sirt1-3 in neurons using RT-qPCR. Additionally, to understand the role of Tert in telomeric dysfunction, we quantified the activity and expression of Tert. Our results revealed that only Ppargc1a, Pink1, and mitochondrial Sirt3 were downregulated in response to the presence of HIV-1 Tat in hippocampal neurons. Interestingly, we observed a reduction in the activity of Tert in the experimental group, while mRNA levels remained relatively stable. These findings support the compelling evidence of dysregulation in both mitophagy and mitochondrial biogenesis in neurons exposed to HIV-1 Tat, which in turn induces telomeric dysfunction.


Assuntos
Infecções por HIV , HIV-1 , Transtornos Neurocognitivos , Sirtuína 3 , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , Ratos , Produtos do Gene tat/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/virologia , Neurônios/metabolismo , Biogênese de Organelas , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Sirtuína 3/genética , Sirtuína 3/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo
10.
Neurochem Res ; 47(12): 3583-3597, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36322368

RESUMO

Postoperative neurocognitive disorder (PND) is a disease that frequently develops in older patients during the perioperative period. It seriously affects the quality of life of the affected patients. Despite advancements in understanding PND, this disorder's mechanisms remain unclear, including pathophysiological processes such as central synaptic plasticity and function, neuroinflammation, excitotoxicity, and neurotrophic support. Growing evidence suggests that microenvironmental changes are major factors for PND induction in older individuals. Exosomes are carriers for transporting different bioactive molecules between nerve cells in the microenvironment and maintaining intercellular communication and tissue homeostasis. Studies have shown that exosomes and microRNAs (miRNAs) are involved in various physiological and pathological processes, including neural processes related to PND, such as neurogenesis and cell death, neuroprotection, and neurotrophy. This article reviews the effects of exosomes and miRNAs on the brain microenvironment in PND and has important implications to improve PND diagnosis, as well as to develop targeted therapy of this disorder.


Assuntos
Exossomos , MicroRNAs , Humanos , Idoso , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Qualidade de Vida , Comunicação Celular , Transtornos Neurocognitivos/genética , Transtornos Neurocognitivos/metabolismo
11.
Anaesthesia ; 77 Suppl 1: 34-42, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35001385

RESUMO

Peri-operative neurocognitive disorders are the most common complication experienced by older individuals undergoing anaesthesia and surgery. Peri-operative neurocognitive disorders, particularly postoperative delirium, result in long-term poor outcomes including: death; dementia; loss of independence; and poor cognitive and functional outcomes. Recent changes to the nomenclature of these disorders aims to align peri-operative neurocognitive disorders with cognitive disorders in the community, with consistent definitions and clinical diagnosis. Possible mechanisms include: undiagnosed neurodegenerative disease; inflammation and resulting neuroinflammation; neuronal damage; and comorbid systemic disease. Pre-operative frailty represents a significant risk for poor postoperative outcomes; it is associated with an increase in the incidence of cognitive decline at 3 and 12 months postoperatively. In addition to cognitive decline, frailty is associated with poor functional outcomes following elective non-cardiac surgery. It was recently shown that 29% of frail patients died or experienced institutionalisation or new disability within 90 days of major elective surgery. Identification of vulnerable patients before undergoing surgery and anaesthesia is the key to preventing peri-operative neurocognitive disorders. Current approaches include: pre-operative delirium and cognitive screening; blood biomarker analysis; intra-operative management that may reduce the incidence of postoperative delirium such as lighter anaesthesia using processed electroencephalography devices; and introduction of guidelines which may reduce or prevent delirium and postoperative neurocognitive disorders. This review will address these issues and advocate for an approach to care for older peri-operative patients which starts in the community and continues throughout the pre-operative, intra-operative, postoperative and post-discharge phases of care management, involving multidisciplinary medical teams, as well as family and caregivers wherever possible.


Assuntos
Idoso Fragilizado , Transtornos Neurocognitivos/prevenção & controle , Assistência Perioperatória/métodos , Complicações Pós-Operatórias/prevenção & controle , Doença Aguda , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Idoso Fragilizado/psicologia , Humanos , Mediadores da Inflamação/metabolismo , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/psicologia , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/psicologia
12.
J Biol Chem ; 295(38): 13377-13392, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32732283

RESUMO

HIV-associated neurocognitive disorders (HANDs) are a frequent outcome of HIV infection. Effective treatment of HIV infection has reduced the rate of progression and severity but not the overall prevalence of HANDs, suggesting ongoing pathological process even when viral replication is suppressed. In this study, we investigated how HIV-1 protein Nef secreted in extracellular vesicles (exNef) impairs neuronal functionality. ExNef were rapidly taken up by neural cells in vitro, reducing the abundance of ABC transporter A1 (ABCA1) and thus cholesterol efflux and increasing the abundance and modifying lipid rafts in neuronal plasma membranes. ExNef caused a redistribution of amyloid precursor protein (APP) and Tau to lipid rafts and increased the abundance of these proteins, as well as of Aß42 ExNef further potentiated phosphorylation of Tau and activation of inflammatory pathways. These changes were accompanied by neuronal functional impairment. Disruption of lipid rafts with cyclodextrin reversed the phenotype. Short-term treatment of C57BL/6 mice with either purified recombinant Nef or exNef similarly resulted in reduced abundance of ABCA1 and elevated abundance of APP in brain tissue. The abundance of ABCA1 in brain tissue of HIV-infected human subjects diagnosed with HAND was lower, and the abundance of lipid rafts was higher compared with HIV-negative individuals. Levels of APP and Tau in brain tissue correlated with the abundance of Nef. Thus, modification of neuronal cholesterol trafficking and of lipid rafts by Nef may contribute to early stages of neurodegeneration and pathogenesis in HAND.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Microdomínios da Membrana/metabolismo , Transtornos Neurocognitivos/metabolismo , Neurônios/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Proteínas tau/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Linhagem Celular Tumoral , Colesterol/genética , Colesterol/metabolismo , Infecções por HIV/complicações , Infecções por HIV/genética , Infecções por HIV/patologia , HIV-1/genética , Humanos , Microdomínios da Membrana/genética , Camundongos , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/genética , Transtornos Neurocognitivos/patologia , Neurônios/patologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Proteínas tau/genética
13.
Gastroenterology ; 158(7): 1929-1947.e6, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32068022

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a global and growing health concern. Emerging evidence points toward metabolic inflammation as a key process in the fatty liver that contributes to multiorgan morbidity. Key extrahepatic comorbidities that are influenced by NAFLD are type 2 diabetes, cardiovascular disease, and impaired neurocognitive function. Importantly, the presence of nonalcoholic steatohepatitis and advanced hepatic fibrosis increase the risk for systemic comorbidity in NAFLD. Although the precise nature of the crosstalk between the liver and other organs has not yet been fully elucidated, there is emerging evidence that metabolic inflammation-in part, emanating from the fatty liver-is the engine that drives cellular dysfunction, cell death, and deleterious remodeling within various body tissues. This review describes several inflammatory pathways and mediators that have been implicated as links between NAFLD and type 2 diabetes, cardiovascular disease, and neurocognitive decline.


Assuntos
Metabolismo Energético , Hepatite/metabolismo , Mediadores da Inflamação/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Encéfalo/metabolismo , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/metabolismo , Comorbidade , Hepatite/epidemiologia , Hepatite/patologia , Humanos , Resistência à Insulina , Fígado/patologia , Transtornos Neurocognitivos/epidemiologia , Transtornos Neurocognitivos/metabolismo , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Fatores de Risco , Transdução de Sinais
14.
J Neuroinflammation ; 18(1): 204, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530841

RESUMO

BACKGROUND: Perioperative neurocognitive disorder (PND) is a long-term postoperative complication in elderly surgical patients. The underlying mechanism of PND is unclear, and no effective therapies are currently available. It is believed that neuroinflammation plays an important role in triggering PND. The secreted glycoprotein myeloid differentiation factor 2 (MD2) functions as an activator of the Toll-like receptor 4 (TLR4) inflammatory pathway, and α5GABAA receptors (α5GABAARs) are known to play a key role in regulating inflammation-induced cognitive deficits. Thus, in this study, we aimed to investigate the role of MD2 in PND and determine whether α5GABAARs are involved in the function of MD2. METHODS: Eighteen-month-old C57BL/6J mice were subjected to laparotomy under isoflurane anesthesia to induce PND. The Barnes maze was used to assess spatial reference learning and memory, and the expression of hippocampal MD2 was assayed by western blotting. MD2 expression was downregulated by bilateral injection of AAV-shMD2 into the hippocampus or tail vein injection of the synthetic MD2 degrading peptide Tat-CIRP-CMA (TCM) to evaluate the effect of MD2. Primary cultured neurons from brain tissue block containing cortices and hippocampus were treated with Tat-CIRP-CMA to investigate whether downregulating MD2 expression affected the expression of α5GABAARs. Electrophysiology was employed to measure tonic currents. For α5GABAARs intervention experiments, L-655,708 and L-838,417 were used to inhibit or activate α5GABAARs, respectively. RESULTS: Surgery under inhaled isoflurane anesthesia induced cognitive impairments and elevated the expression of MD2 in the hippocampus. Downregulation of MD2 expression by AAV-shMD2 or Tat-CIRP-CMA improved the spatial reference learning and memory in animals subjected to anesthesia and surgery. Furthermore, Tat-CIRP-CMA treatment decreased the expression of membrane α5GABAARs and tonic currents in CA1 pyramidal neurons in the hippocampus. Inhibition of α5GABAARs by L-655,708 alleviated cognitive impairments after anesthesia and surgery. More importantly, activation of α5GABAARs by L-838,417 abrogated the protective effects of Tat-CIRP-CMA against anesthesia and surgery-induced spatial reference learning and memory deficits. CONCLUSIONS: MD2 contributes to the occurrence of PND by regulating α5GABAARs in aged mice, and Tat-CIRP-CMA is a promising neuroprotectant against PND.


Assuntos
Envelhecimento/metabolismo , Antígeno 96 de Linfócito/biossíntese , Transtornos Neurocognitivos/metabolismo , Complicações Pós-Operatórias/metabolismo , Receptores de GABA-A/biossíntese , Envelhecimento/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Agonistas GABAérgicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Período Perioperatório/efeitos adversos , Período Perioperatório/tendências , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Gravidez
15.
FASEB J ; 34(2): 1996-2010, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31907999

RESUMO

Despite the use of antiretroviral therapy for the treatment of HIV-1 infection, cognitive impairments, that is, HIV-1-associated neurocognitive disorders remain prevalent potentially due to persistent viral replication, production of viral proteins, associated brain inflammation or in certain instances, antiretroviral neurotoxicity. Cellular targets in the brain include microglia which in response to infection release inflammatory markers and viral proteins. Evidence suggests that PPARγ agonists exert anti-inflammatory properties in neurological disorders. However, these agonists namely, thiazolidinediones have limited use in the clinic due to reported adverse side effects. INT131 is a novel non-thiazolidinedione compound that belongs to a new class of drugs known as selective PPARγ modulators. INT131 is considered to have a safer profile; however, its neuroprotective role in vivo is not known.The goal of this study was to examine the effect of INT131 in the context of EcoHIV-induced inflammation in vitro, in primary cultures of mouse glial cells and in vivo, in a mouse model of EcoHIV-associated brain inflammation, as well as characterize its pharmacokinetic properties and brain penetration. In primary cultures of glial cells and in the in vivo mouse model, EcoHIV exposure resulted in a significant elevation of inflammatory markers such as TNFα, IL-1ß, CCL3, and C3 which were attenuated with INT131 treatment. Pharmacokinetic analyses revealed that INT131 penetrates into the brain with a brain to blood partition ratio Kp value of 8.5%. Overall, this is the first report to demonstrate that INT131 could be a potential candidate for the treatment of HIV-1-associated brain inflammation.


Assuntos
Anti-Inflamatórios , Infecções por HIV/tratamento farmacológico , HIV-1/metabolismo , Transtornos Neurocognitivos/tratamento farmacológico , PPAR gama/agonistas , Quinolinas , Sulfonamidas , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/patologia , HIV-1/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Transtornos Neurocognitivos/genética , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/patologia , Neuroglia/patologia , PPAR gama/genética , PPAR gama/metabolismo , Quinolinas/farmacocinética , Quinolinas/farmacologia , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia
16.
Neurochem Res ; 46(12): 3190-3199, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34392443

RESUMO

Perioperative neurocognitive disorder (PND) is the mild cognitive impairment associated with surgery and anesthesia. It is a common surgical complication in the elderly. An important mechanism of PND is the surgically induced neuroinflammation. The interaction between the neuronal surface protein CD200 and its receptor in microglia, CD200R1, is an important regulatory pathway to control neuroinflammation. However, the potential role of the CD200-CD200R1 pathway in the acute period of PND has not been fully investigated. In this study, in a PND mouse model, we first measured the protein expression level of CD200, CD200R1, and the related pro- and anti-inflammatory cytokines in the hippocampus. Then, we investigated cognitive function, neuroinflammation and postsynaptic density protein 95 (PSD-95) expression after the injection of CD200-Fc (agonist), CD200R1-Fc (antagonist) or IgG1-Fc (vehicle) into lateral ventricle in PND models. Compared with the control group, the expression of CD200 was up-regulated at day 1 after surgery in PND models. The injection of the CD200-Fc into the lateral ventricle could mitigate primed neuroinflammation and cognitive decline, increase the expression of PSD-95 at day 1 after surgery in PND models. In conclusion, we have demonstrated that CD200-CD200R1 signaling was involved in the acute inflammatory process of PND, and activating CD200R1 can inhibit neuroinflammation and attenuate PND. Thus, the CD200-CD200R1 axis is a potential novel target for PND prevention and treatment.


Assuntos
Antígenos CD/metabolismo , Fígado/cirurgia , Transtornos Neurocognitivos/prevenção & controle , Doenças Neuroinflamatórias/prevenção & controle , Receptores de Orexina/metabolismo , Assistência Perioperatória , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Animais , Antígenos CD/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Receptores de Orexina/genética
17.
Alcohol Clin Exp Res ; 45(2): 290-306, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33296091

RESUMO

Alcohol use disorder (AUD) among people living with HIV (PLWH) is a significant public health concern. Despite the advent of effective antiretroviral therapy, up to 50% of PLWH still experience worsened neurocognition, which comorbid AUD exacerbates. We report converging lines of neuroimaging and neuropsychological evidence linking comorbid HIV/AUD to dysfunction in brain regions linked to executive function, learning and memory, processing speed, and motor control, and consequently to impairment in daily life. The brain shrinkage, functional network alterations, and brain metabolite disruption seen in individuals with HIV/AUD have been attributed to several interacting pathways: viral proteins and EtOH are directly neurotoxic and exacerbate each other's neurotoxic effects; EtOH reduces antiretroviral adherence and increases viral replication; AUD and HIV both increase gut microbial translocation, promoting systemic inflammation and HIV transport into the brain by immune cells; and HIV may compound alcohol's damaging effects on the liver, further increasing inflammation. We additionally review the neurocognitive effects of aging, Hepatitis C coinfection, obesity, and cardiovascular disease, tobacco use, and nutritional deficiencies, all of which have been shown to compound cognitive changes in HIV, AUD, and in their comorbidity. Finally, we examine emerging questions in HIV/AUD research, including genetic and cognitive protective factors, the role of binge drinking in HIV/AUD-linked cognitive decline, and whether neurocognitive and brain functions normalize after drinking cessation.


Assuntos
Alcoolismo/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Infecções por HIV/diagnóstico por imagem , Neuroimagem/tendências , Envelhecimento/metabolismo , Alcoolismo/epidemiologia , Alcoolismo/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/diagnóstico por imagem , Sistema Nervoso Central/metabolismo , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/metabolismo , Infecções por HIV/epidemiologia , Infecções por HIV/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Transtornos Neurocognitivos/diagnóstico por imagem , Transtornos Neurocognitivos/epidemiologia , Transtornos Neurocognitivos/metabolismo
18.
Acta Pharmacol Sin ; 42(7): 1069-1079, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33758353

RESUMO

Sepsis is life-threatening organ dysfunction due to dysregulated systemic inflammatory and immune response to infection, often leading to cognitive impairments. Growing evidence shows that artemisinin, an antimalarial drug, possesses potent anti-inflammatory and immunoregulatory activities. In this study we investigated whether artemisinin exerted protective effect against neurocognitive deficits associated with sepsis and explored the underlying mechanisms. Mice were injected with LPS (750 µg · kg-1 · d-1, ip, for 7 days) to establish an animal model of sepsis. Artemisinin (30 mg · kg-1 · d-1, ip) was administered starting 4 days prior LPS injection and lasting to the end of LPS injection. We showed that artemisinin administration significantly improved LPS-induced cognitive impairments assessed in Morris water maze and Y maze tests, attenuated neuronal damage and microglial activation in the hippocampus. In BV2 microglial cells treated with LPS (100 ng/mL), pre-application of artemisinin (40 µΜ) significantly reduced the production of proinflammatory cytokines (i.e., TNF-α, IL-6) and suppressed microglial migration. Furthermore, we revealed that artemisinin significantly suppressed the nuclear translocation of NF-κB and the expression of proinflammatory cytokines by activating the AMPKα1 pathway; knockdown of AMPKα1 markedly abolished the anti-inflammatory effects of artemisinin in BV2 microglial cells. In conclusion, atemisinin is a potential therapeutic agent for sepsis-associated neuroinflammation and cognitive impairment, and its effect is probably mediated by activation of the AMPKα1 signaling pathway in microglia.


Assuntos
Artemisininas/uso terapêutico , Microglia/efeitos dos fármacos , Transtornos Neurocognitivos/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Sepse/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/metabolismo , Neurônios/efeitos dos fármacos , Sepse/induzido quimicamente , Sepse/complicações , Sepse/metabolismo
19.
Learn Mem ; 27(9): 395-413, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32817306

RESUMO

A set of common-acting iron-responsive 5'untranslated region (5'UTR) motifs can fold into RNA stem loops that appear significant to the biology of cognitive declines of Parkinson's disease dementia (PDD), Lewy body dementia (LDD), and Alzheimer's disease (AD). Neurodegenerative diseases exhibit perturbations of iron homeostasis in defined brain subregions over characteristic time intervals of progression. While misfolding of Aß from the amyloid-precursor-protein (APP), alpha-synuclein, prion protein (PrP) each cause neuropathic protein inclusions in the brain subregions, iron-responsive-like element (IRE-like) RNA stem-loops reside in their transcripts. APP and αsyn have a role in iron transport while gene duplications elevate the expression of their products to cause rare familial cases of AD and PDD. Of note, IRE-like sequences are responsive to excesses of brain iron in a potential feedback loop to accelerate neuronal ferroptosis and cognitive declines as well as amyloidosis. This pathogenic feedback is consistent with the translational control of the iron storage protein ferritin. We discuss how the IRE-like RNA motifs in the 5'UTRs of APP, alpha-synuclein and PrP mRNAs represent uniquely folded drug targets for therapies to prevent perturbed iron homeostasis that accelerates AD, PD, PD dementia (PDD) and Lewy body dementia, thus preventing cognitive deficits. Inhibition of alpha-synuclein translation is an option to block manganese toxicity associated with early childhood cognitive problems and manganism while Pb toxicity is epigenetically associated with attention deficit and later-stage AD. Pathologies of heavy metal toxicity centered on an embargo of iron export may be treated with activators of APP and ferritin and inhibitors of alpha-synuclein translation.


Assuntos
Regiões 5' não Traduzidas/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Ferritinas/metabolismo , Ferroptose/fisiologia , Intoxicação por Metais Pesados/metabolismo , Proteínas Reguladoras de Ferro/metabolismo , Transtornos Neurocognitivos/metabolismo , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Ferritinas/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Intoxicação por Metais Pesados/tratamento farmacológico , Intoxicação por Metais Pesados/fisiopatologia , Humanos , Proteínas Reguladoras de Ferro/efeitos dos fármacos , Transtornos Neurocognitivos/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , alfa-Sinucleína/efeitos dos fármacos
20.
Neurobiol Dis ; 136: 104701, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31837421

RESUMO

HIV-associated neurocognitive impairments (HANI) are a spectrum of neurological disorders due to the effects of HIV-1 on the central nervous system (CNS). The HIV-1 subtypes; HIV-1 subtype B (HIV-1B) and HIV-1 subtype C (HIV-1C) are responsible for the highest prevalence of HANI and HIV infections respectively. The HIV transactivator of transcription (Tat) protein is a major contributor to the neuropathogenesis of HIV. The effects of the Tat protein on cells of the CNS is determined by the subtype-associated amino acid sequence variations. The extent to which the sequence variation between Tat-subtypes contribute to underlying mechanisms and neurological outcomes are not clear. In this review of the literature, we discuss how amino acid variations between HIV-1B Tat (TatB) and HIV-1C Tat (TatC) proteins contribute to the potential underlying neurobiological mechanisms of HANI. Tat-C is considered to be a more effective transactivator, whereas Tat-B may exert increased neurovirulence, including neuronal apoptosis, monocyte infiltration into the brain, (neuro)inflammation, oxidative stress and blood-brain barrier damage. These findings support the premise that Tat variants from different HIV-1 subtypes may direct neurovirulence and neurological outcomes in HANI.


Assuntos
Infecções por HIV/genética , HIV-1/genética , Transtornos Neurocognitivos/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Sequência de Aminoácidos , Infecções por HIV/epidemiologia , Infecções por HIV/metabolismo , HIV-1/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Transtornos Neurocognitivos/epidemiologia , Transtornos Neurocognitivos/metabolismo , Transcrição Gênica/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA