Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(19): 7797-7809, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30902814

RESUMO

Avian coronaviruses, including infectious bronchitis virus (IBV), are important respiratory pathogens of poultry. The heavily glycosylated IBV spike protein is responsible for binding to host tissues. Glycosylation sites in the spike protein are highly conserved across viral genotypes, suggesting an important role for this modification in the virus life cycle. Here, we analyzed the N-glycosylation of the receptor-binding domain (RBD) of IBV strain M41 spike protein and assessed the role of this modification in host receptor binding. Ten single Asn-to-Ala substitutions at the predicted N-glycosylation sites of the M41-RBD were evaluated along with two control Val-to-Ala substitutions. CD analysis revealed that the secondary structure of all variants was retained compared with the unmodified M41-RBD construct. Six of the 10 glycosylation variants lost binding to chicken trachea tissue and an ELISA-presented α2,3-linked sialic acid oligosaccharide ligand. LC/MSE glycomics analysis revealed that glycosylation sites have specific proportions of N-glycan subtypes. Overall, the glycosylation patterns of most variant RBDs were highly similar to those of the unmodified M41-RBD construct. In silico docking experiments with the recently published cryo-EM structure of the M41 IBV spike protein and our glycosylation results revealed a potential ligand receptor site that is ringed by four glycosylation sites that dramatically impact ligand binding. Combined with the results of previous array studies, the glycosylation and mutational analyses presented here suggest a unique glycosylation-dependent binding modality for the M41 spike protein.


Assuntos
Vírus da Bronquite Infecciosa/química , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus/química , Substituição de Aminoácidos , Animais , Galinhas/virologia , Glicosilação , Células HEK293 , Humanos , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/metabolismo , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
J Gen Virol ; 101(6): 599-608, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32213247

RESUMO

Infection of chicken coronavirus infectious bronchitis virus (IBV) is initiated by binding of the viral heavily N-glycosylated attachment protein spike to the alpha-2,3-linked sialic acid receptor Neu5Ac. Previously, we have shown that N-glycosylation of recombinantly expressed receptor binding domain (RBD) of the spike of IBV-M41 is of critical importance for binding to chicken trachea tissue. Here we investigated the role of N-glycosylation of the RBD on receptor specificity and virus replication in the context of the virus particle. Using our reverse genetics system we were able to generate recombinant IBVs for nine-out-of-ten individual N-glycosylation mutants. In vitro growth kinetics of these viruses were comparable to the virus containing the wild-type M41-S1. Furthermore, Neu5Ac binding by the recombinant viruses containing single N-glycosylation site knock-out mutations matched the Neu5Ac binding observed with the recombinant RBDs. Five N-glycosylation mutants lost the ability to bind Neu5Ac and gained binding to a different, yet unknown, sialylated glycan receptor on host cells. These results demonstrate that N-glycosylation of IBV is a determinant for receptor specificity.


Assuntos
Infecções por Coronavirus/imunologia , Especificidade de Hospedeiro/imunologia , Vírus da Bronquite Infecciosa/química , Domínios Proteicos , Receptores Virais/imunologia , Glicoproteína da Espícula de Coronavírus/química , Animais , Linhagem Celular , Embrião de Galinha , Infecções por Coronavirus/virologia , Glicosilação , Vírus da Bronquite Infecciosa/imunologia , Rim/citologia , Rim/embriologia , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Proteínas Recombinantes , Glicoproteína da Espícula de Coronavírus/metabolismo , Tropismo Viral/imunologia , Ligação Viral , Replicação Viral
3.
J Biol Chem ; 290(11): 7160-8, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25609249

RESUMO

Papain-like protease (PLpro) of coronaviruses (CoVs) carries out proteolytic maturation of non-structural proteins that play a role in replication of the virus and performs deubiquitination of host cell factors to scuttle antiviral responses. Avian infectious bronchitis virus (IBV), the causative agent of bronchitis in chicken that results in huge economic losses every year in the poultry industry globally, encodes a PLpro. The substrate specificities of this PLpro are not clearly understood. Here, we show that IBV PLpro can degrade Lys(48)- and Lys(63)-linked polyubiquitin chains to monoubiquitin but not linear polyubiquitin. To explain the substrate specificities, we have solved the crystal structure of PLpro from IBV at 2.15-Å resolution. The overall structure is reminiscent of the structure of severe acute respiratory syndrome CoV PLpro. However, unlike the severe acute respiratory syndrome CoV PLpro that lacks blocking loop (BL) 1 of deubiquitinating enzymes, the IBV PLpro has a short BL1-like loop. Access to a conserved catalytic triad consisting of Cys(101), His(264), and Asp(275) is regulated by the flexible BL2. A model of ubiquitin-bound IBV CoV PLpro brings out key differences in substrate binding sites of PLpros. In particular, P3 and P4 subsites as well as residues interacting with the ß-barrel of ubiquitin are different, suggesting different catalytic efficiencies and substrate specificities. We show that IBV PLpro cleaves peptide substrates KKAG-7-amino-4-methylcoumarin and LRGG-7-amino-4-methylcoumarin with different catalytic efficiencies. These results demonstrate that substrate specificities of IBV PLpro are different from other PLpros and that IBV PLpro might target different ubiquitinated host factors to aid the propagation of the virus.


Assuntos
Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Vírus da Bronquite Infecciosa/enzimologia , Papaína/química , Poliubiquitina/metabolismo , Doenças das Aves Domésticas/virologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Infecções por Coronavirus/enzimologia , Cristalografia por Raios X , Vírus da Bronquite Infecciosa/química , Vírus da Bronquite Infecciosa/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Papaína/metabolismo , Aves Domésticas , Doenças das Aves Domésticas/enzimologia , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato , Ubiquitina/metabolismo
4.
Biotechnol Appl Biochem ; 63(1): 106-12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25311758

RESUMO

The infectious bronchitis virus is a causative agent of avian infectious bronchitis (AIB), and is is an important disease that produces severe economic losses to the poultry industry worldwide. Recent AIB outbreaks in India have been associated with poor growth in broilers, drop in egg production, and thin egg shells in layers. The complete spike gene of Indian AIB vaccine strain was amplified and sequenced using a conventional reverse transcription polymerase chain reaction and is submitted to the GenBank (accession no KF188436). Phylogenetic analysis revealed that the vaccine strain currently used belongs to H120 genotype, an attenuated strain of Massachusetts (Mass) serotype. Nucleotide and amino acid sequence comparisons have shown that the reported spike gene from Indian isolates have 71.8%-99% and 71.4%-96.9% genetic similarity with the sequenced H120 strain. The study identifies live attenuated IBV vaccine strain, which is routinely used for vaccination, for the first time. Based on nucleotide and amino acid relatedness studies of the vaccine strain with reported IBV sequences from India, it is shown that the current vaccine strain is efficient in controlling the IBV infection. Continuous monitoring of IBV outbreaks by sequencing for genotyping and in vivo cross protection studies for serotyping is not only important for epidemiological investigation but also for evaluation of efficacy of the current vaccine.


Assuntos
Infecções por Coronavirus/veterinária , Glicoproteínas/genética , Vírus da Bronquite Infecciosa/genética , Doenças das Aves Domésticas/virologia , Vacinas Atenuadas/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Biologia Computacional , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Genótipo , Glicoproteínas/química , Índia/epidemiologia , Vírus da Bronquite Infecciosa/química , Dados de Sequência Molecular , Filogenia , Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Sinais Direcionadores de Proteínas , Vacinas Atenuadas/química , Proteínas Virais/química , Vacinas Virais/química , Vacinas Virais/genética
5.
Can J Microbiol ; 61(12): 983-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26452019

RESUMO

Infectious bronchitis virus (IBV) is responsible for causing respiratory, renal, and urogenital diseases in poultry. IBV infection in poultry leads to high mortality rates in affected flocks and to severe economic losses due to a drop in egg production and a reduced gain in live weight of the broiler birds. IBV-encoded spike protein (S) is the major protective immunogen for the host. Although the functions of the S protein have been well studied, the factors shaping synonymous codon usage bias and nucleotide composition in the S gene have not been reported yet. In the present study, we analyzed the relative synonymous codon usage and effective number of codons (Nc) using the 53 IBV S genes. The major trend in codon usage variation was studied using correspondence analysis. The plot of Nc values against GC3 as well as the correlation between base composition and codon usage bias suggest that mutational pressure rather than natural selection is the main factor that determines the codon usage bias in the S gene. Interestingly, no association of aromaticity, degree of hydrophobicity, and aliphatic index was observed with the codon usage variation in IBV S genes. The study represents a comprehensive analysis of IBV S gene codon usage patterns and provides a basic understanding of the codon usage bias.


Assuntos
Códon , Infecções por Coronavirus/virologia , Vírus da Bronquite Infecciosa/genética , Glicoproteína da Espícula de Coronavírus/química , Animais , Galinhas , Biologia Computacional , Vírus da Bronquite Infecciosa/química , Mutação , Glicoproteína da Espícula de Coronavírus/genética
6.
PLoS Pathog ; 8(5): e1002674, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22570613

RESUMO

The coronavirus E protein is a small membrane protein with a single predicted hydrophobic domain (HD), and has a poorly defined role in infection. The E protein is thought to promote virion assembly, which occurs in the Golgi region of infected cells. It has also been implicated in the release of infectious particles after budding. The E protein has ion channel activity in vitro, although a role for channel activity in infection has not been established. Furthermore, the membrane topology of the E protein is of considerable debate, and the protein may adopt more than one topology during infection. We previously showed that the HD of the infectious bronchitis virus (IBV) E protein is required for the efficient release of infectious virus, an activity that correlated with disruption of the secretory pathway. Here we report that a single residue within the hydrophobic domain, Thr16, is required for secretory pathway disruption. Substitutions of other residues for Thr16 were not tolerated. Mutations of Thr16 did not impact virus assembly as judged by virus-like particle production, suggesting that alteration of secretory pathway and assembly are independent activities. We also examined how the membrane topology of IBV E affected its function by generating mutant versions that adopted either a transmembrane or membrane hairpin topology. We found that a transmembrane topology was required for disrupting the secretory pathway, but was less efficient for virus-like particle production. The hairpin version of E was unable to disrupt the secretory pathway or produce particles. The findings reported here identify properties of the E protein that are important for its function, and provide insight into how the E protein may perform multiple roles during infection.


Assuntos
Infecções por Coronavirus/virologia , Vírus da Bronquite Infecciosa/química , Vírus da Bronquite Infecciosa/metabolismo , Via Secretória , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Linhagem Celular Tumoral , Infecções por Coronavirus/metabolismo , Complexo de Golgi/ultraestrutura , Células HeLa , Humanos , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/patogenicidade , Mutação , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência , Proteínas do Envelope Viral/química , Montagem de Vírus
7.
Artigo em Inglês | MEDLINE | ID: mdl-22684079

RESUMO

Avian infectious bronchitis virus (IBV) is a member of the group III coronaviruses, which differ from the other groups of coronaviruses in that they do not encode the essential pathogenic factor nonstructural protein 1 (nsp1) and instead start with nsp2. IBV nsp2 is one of the first replicase proteins to be translated and processed in the viral life cycle; however, it has an entirely unknown function. In order to better understand the structural details and functional mechanism of IBV nsp2, the recombinant protein was cloned, overexpressed in Escherichia coli, purified and crystallized. The crystals diffracted to 2.8 Å resolution and belonged to space group P2(1), with unit-cell parameters a = 57.0, b = 192.3, c = 105.7 Å, ß = 90.8°. Two molecules were found in the asymmetric unit; the Matthews coefficient was 3.9 Å(3) Da(-1), corresponding to a solvent content of 68.2%.


Assuntos
Vírus da Bronquite Infecciosa/química , Proteínas não Estruturais Virais/química , Cristalização , Cristalografia por Raios X , Proteínas não Estruturais Virais/isolamento & purificação
8.
Avian Dis ; 56(1): 15-28, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22545524

RESUMO

Fifty-six isolates of avian infectious bronchitis virus (IBV) were obtained from different field outbreaks in China in 2010, and they were genotyped by comparison with 19 reference strains in the present study. The results showed that LX4-type isolates are still the predominant IBVs circulating in chicken flocks in China, and these isolates could be grouped further into two clusters. Viruses in each cluster had favored amino acid residues at different positions in the S1 subunit of the spike protein. In addition, a recombination event was observed to have occurred between LX4- and tl/CH/LDT3/03I-type strains, which contributed to the emergence of a new strain. The most important finding of the study is the isolation and identification of Taiwan II-type (TW II-type) strains of IBV in mainland China in recent years. The genome of TW II-type IBV strains isolated in mainland China has experienced mutations and deletions, as demonstrated by comparison of the entire genome sequence with those of IBV strains isolated in Taiwan. Pathogenicity testing and sequence analysis of the 3' terminal untranslated region revealed that TW II-type IBV strains isolated in mainland China have a close relationship with the embryo-passaged, attenuated TW2296/95.


Assuntos
Galinhas , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/classificação , Vírus da Bronquite Infecciosa/genética , Glicoproteínas de Membrana/genética , Doenças das Aves Domésticas/virologia , Proteínas do Envelope Viral/genética , Animais , Anticorpos Antivirais/sangue , Embrião de Galinha , China , Clonagem Molecular , Infecções por Coronavirus/virologia , Feminino , Variação Genética , Genótipo , Vírus da Bronquite Infecciosa/química , Vírus da Bronquite Infecciosa/patogenicidade , Masculino , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína , Glicoproteína da Espícula de Coronavírus , Virulência
9.
Trop Anim Health Prod ; 44(7): 1791-5, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22573006

RESUMO

In this study, two isolates of infectious bronchitis virus (IBV) from field outbreaks in 2008 (India/LKW/56/IVRI/08) and 2010 (India/NMK/72/IVRI/10) from broiler chickens in India were isolated and characterized. Reverse transcription polymerase chain reaction-restriction fragment length polymorphism of the entire S1 gene revealed that these isolates belong to two different genotypes, India/LKW/56/IVRI/08 as Mass strain whereas India/NMK/72/IVRI/10 as of different genotype. Nucleotide sequencing analysis showed that India/LKW/56/IVRI/08 shared 99 % homology with THA280252 (Thailand) and India/NMK/72/IVRI/10 shared greater than 99 % homology with 4/91 pathogenic strain (UK), JP/Wakayama/2/2004 (Japan) and TA03 (China), while the two Indian IBV isolates shared 73 % identity between them. Phylogenetic data allowed classification of two Indian isolates, India/LKW/56/IVRI/08 as having unique lineage within Mass genotype and India/NMK/72/IVRI/10 as of 4/91 genotype. Our study confirmed the presence of 4/91 (793/B) IBV nephropathogenic strain for the first time in India by virus isolation and sequencing.


Assuntos
Galinhas , Infecções por Coronavirus/veterinária , Surtos de Doenças/veterinária , Vírus da Bronquite Infecciosa/genética , Glicoproteínas de Membrana/genética , Doenças das Aves Domésticas/virologia , Proteínas do Envelope Viral/genética , Animais , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Técnicas de Genotipagem , Índia/epidemiologia , Vírus da Bronquite Infecciosa/química , Vírus da Bronquite Infecciosa/isolamento & purificação , Glicoproteínas de Membrana/química , Dados de Sequência Molecular , Filogenia , Polimorfismo de Fragmento de Restrição , Doenças das Aves Domésticas/epidemiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Alinhamento de Sequência/veterinária , Análise de Sequência de DNA/veterinária , Análise de Sequência de Proteína/veterinária , Homologia de Sequência , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/química
10.
Molecules ; 16(2): 1044-54, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21350392

RESUMO

In the present study, anti-IBV (infectious bronchitis virus) activities of (-)-pinenes were studied by MTT assay, as well as docking and molecular dynamic (MD) simulations. The CC50 values of (-)-α-pinene and (-)-ß-pinene were above 10 mM. And the maximum noncytotoxic concentrations (TD0) of (-)-α-pinene and (-)-ß-pinene were determined as 7.88 ± 0.06 and 6.09 ± 0.31 mM, respectively. The two compounds were found to inhibit IBV with an IC50 of 0.98 ± 0.25 and 1.32 ± 0.11 mM. The MTT assay showed that the inhibitions of (-)-pinenes against IBV appear to occur moderately before entering the cell but are much stronger occur after penetration of the virus into the cell. Molecular simulations indicated that (-)-α-pinene and (-)-ß-pinene specifically interact with the active site which is located at the N terminus of phosphorylated nucleocapsid (N) protein, with the former being more potent than the latter. The binding energies of them are -36.83 and -35.59 kcal mol-1, respectively. Results presented here may suggest that (-)-α-pinene and (-)-ß-pinene possess anti-IBV properties, and therefore are a potential source of anti-IBV ingredients for the pharmaceutical industry.


Assuntos
Compostos Bicíclicos com Pontes/farmacologia , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Monoterpenos/farmacologia , Proteínas do Nucleocapsídeo/metabolismo , Animais , Antivirais/farmacologia , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/química , Chlorocebus aethiops , Vírus da Bronquite Infecciosa/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Monoterpenos/química , Proteínas do Nucleocapsídeo/química , Extratos Vegetais/química , Conformação Proteica , Ribavirina/farmacologia , Células Vero
11.
Avian Dis ; 65(3): 364-372, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34427409

RESUMO

We previously reported that recombinant Newcastle disease virus LaSota (rLS) expressing infectious bronchitis virus (IBV) Arkansas (Ark)-type trimeric spike (S) ectodomain (Se; rLS/ArkSe) provides suboptimal protection against IBV challenge. We have now developed rLS expressing chicken granulocyte-macrophage colony-stimulating factor (GMCSF) and IBV Ark Se in an attempt to enhance vaccine effectiveness. In the current study, we first compared protection conferred by vaccination with rLS/ArkSe and rLS/ArkSe.GMCSF. Vaccinated chickens were challenged with virulent Ark, and protection was determined by clinical signs, viral load, and tracheal histomorphometry. Results showed that coexpression of GMCSF and the Se from rLS significantly reduced tracheal viral load and tracheal lesions compared with chickens vaccinated with rLS/ArkSe. In a second experiment, we evaluated enhancement of cross-protection of a Massachusetts (Mass) attenuated vaccine by priming or boosting with rLS/ArkSe.GMCSF. Vaccinated chickens were challenged with Ark, and protection was evaluated. Results show that priming or boosting with the recombinant virus significantly increased cross-protection conferred by Mass against Ark virulent challenge. Greater reductions of viral loads in both trachea and lachrymal fluids were observed in chickens primed with rLS/ArkSe.GMCSF and boosted with Mass. Consistently, Ark Se antibody levels measured with recombinant Ark Se protein-coated ELISA plates 14 days after boost were significantly higher in these chickens. Unexpectedly, the inverse vaccination scheme, that is, priming with Mass and boosting with the recombinant vaccine, proved somewhat less effective. We concluded that a prime and boost strategy by using rLS/ArkSe.GMCSF and the worldwide ubiquitous Mass attenuated vaccine provides enhanced cross-protection. Thus, rLS/GMCSF coexpressing the Se of regionally relevant IBV serotypes could be used in combination with live Mass to protect against regionally circulating IBV variant strains.


Protección incrementada por el virus recombinante de la enfermedad de Newcastle que expresa el ectodominio de la espícula del virus de la bronquitis infecciosa y el factor estimulante de colonias de granulocitos y macrófagos del pollo. Anteriormente se reportó que la cepa LaSota recombinante del virus de la enfermedad de Newcastle (rLS) que expresa el ectodominio de la espícula trimérica (S) de tipo Arkansas (Ark) del virus de la bronquitis infecciosa (IBV) (Se; rLS/ArkSe) proporciona una protección subóptima contra la exposición al virus de la bronquitis infecciosa. Ahora se ha desarrollado hemos desarrollado una cepa LaSota recombinante (rLS) que expresa el factor estimulante de colonias de granulocitos y macrófagos de pollo (GMCSF) y la espícula del virus de bronquitis Arkansas en un intento para mejorar la efectividad de la vacuna. En el estudio actual, primero se comparó la protección conferida por la vacunación con los virus rLS/ArkSe y rLS/ArkSe.GMCSF. Los pollos vacunados se desafiaron con un virus Arkansas virulento y la protección se determinó mediante los signos clínicos, la carga viral y la histomorfometría de la tráquea. Los resultados mostraron que la coexpresión del factor estimulante de colonias de granulocitos y macrófagos de pollo y la espícula de la cepa recombinante LaSota redujo significativamente la carga viral traqueal y las lesiones traqueales en comparación con los pollos vacunados con el virus rLS/ArkSe. En un segundo experimento, se evaluó el incremento en la protección cruzada por una vacuna atenuada de Massachusetts (Mass) mediante la primovacunación o la vacunación de refuerzo con rLS/ArkSe.GMCSF. Los pollos vacunados fueron desafiados con el virus Arkansas y se evaluó la protección. Los resultados mostraron que la primovacunación o la vacunación de refuerzo con el virus recombinante aumentó significativamente la protección cruzada conferida por el virus Massachusetts contra el desafío virulento con el virus Arkansas. Se observaron mayores reducciones de las cargas virales en los fluidos traqueales y lagrimales en pollos primovacunadoss con rLS/ArkSe.GMCSF y con vacunación de refuerzo con Massachusetts. De manera consistente, los niveles de anticuerpos Ark Se medidos con placas de ELISA recubiertas con proteína Ark Se recombinante a los 14 días después del refuerzo fueron significativamente más altos en estos pollos. De manera inesperada, el esquema de vacunación inverso, es decir, la primovacunación con Massachusetts y el refuerzo con la vacuna recombinante, resultó menos efectivo. Se concluye que una estrategia de primovacunación y refuerzo mediante el uso de rLS/ArkSe.GMCSF y la vacuna atenuada con Massachusetts usada en todo el mundo proporciona una protección cruzada aumentada. Por tanto, el virus rLS/GMCSF que coexpresa la proteína de la espícula de los serotipos regionales relevantes de bronquitis infecciosa podría usarse en combinación con una vacuna viva Massachusetts para proteger contra cepas variantes del virus de la bronquitis infecciosa que circulan regionalmente.


Assuntos
Infecções por Coronavirus/veterinária , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Vírus da Bronquite Infecciosa/imunologia , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/prevenção & controle , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Antivirais/imunologia , Galinhas/genética , Galinhas/imunologia , Galinhas/virologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Proteção Cruzada , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Vírus da Bronquite Infecciosa/química , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/fisiologia , Vírus da Doença de Newcastle/metabolismo , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/administração & dosagem , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Traqueia/imunologia , Traqueia/virologia , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Carga Viral
12.
J Virol ; 83(2): 1083-92, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18987156

RESUMO

The coronaviruses are a large family of plus-strand RNA viruses that cause a wide variety of diseases both in humans and in other organisms. The coronaviruses are composed of three main lineages and have a complex organization of nonstructural proteins (nsp's). In the coronavirus, nsp3 resides a domain with the macroH2A-like fold and ADP-ribose-1"-monophosphatase (ADRP) activity, which is proposed to play a regulatory role in the replication process. However, the significance of this domain for the coronaviruses is still poorly understood due to the lack of structural information from different lineages. We have determined the crystal structures of two viral ADRP domains, from the group I human coronavirus 229E and the group III avian infectious bronchitis virus, as well as their respective complexes with ADP-ribose. The structures were individually solved to elucidate the structural similarities and differences of the ADRP domains among various coronavirus species. The active-site residues responsible for mediating ADRP activity were found to be highly conserved in terms of both sequence alignment and structural superposition, whereas the substrate binding pocket exhibited variations in structure but not in sequence. Together with data from a previous analysis of the ADRP domain from the group II severe acute respiratory syndrome coronavirus and from other related functional studies of ADRP domains, a systematic structural analysis of the coronavirus ADRP domains was realized for the first time to provide a structural basis for the function of this domain in the coronavirus replication process.


Assuntos
Coronavirus Humano 229E/química , Vírus da Bronquite Infecciosa/química , Monoéster Fosfórico Hidrolases/química , Estrutura Quaternária de Proteína , Proteínas não Estruturais Virais/química , Adenosina Difosfato Ribose/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
13.
Artigo em Inglês | MEDLINE | ID: mdl-20516605

RESUMO

Avian infectious bronchitis virus (IBV), which causes respiratory disease in infected birds, belongs to coronavirus group 3. IBV encodes 15 nonstructural proteins (nsp2-nsp16) which play crucial roles in RNA transcription and genome replication. Nonstructural protein 9 (nsp9) has been identified as a protein that is essential to viral replication because of its single-stranded RNA-binding ability. The gene segment encoding IBV nsp9 has been cloned and expressed in Escherichia coli. The protein has been crystallized and the crystals diffracted X-rays to 2.44 A resolution. They belonged to the cubic space group I432, with unit-cell parameters a = b = c = 123.4 A, alpha = beta = gamma = 90 degrees . The asymmetric unit appeared to contain one molecule, with a solvent content of 62% (V(M) = 3.26 A(3) Da(-1)).


Assuntos
Vírus da Bronquite Infecciosa/química , Proteínas não Estruturais Virais/química , Cristalização , Cristalografia por Raios X
14.
Artigo em Inglês | MEDLINE | ID: mdl-19652340

RESUMO

Avian infectious bronchitis virus (IBV) is a prototype of the group III coronaviruses and encodes 15 nonstructural proteins which make up the transcription/replication machinery. The nsp2 protein from IBV has a unique and novel sequence and has no experimentally confirmed function in replication, whereas it has been proposed to be crucial for early viral infection and may inhibit the early host immune response. The gene that encodes a double-mutant IBV nsp2 N-terminal domain (residues 9-393 of the polyprotein, with mutations Q132L and L270F) was cloned and expressed in Escherichia coli and the protein was subjected to crystallization trials. The crystals diffracted to 2.5 A resolution and belonged to space group P6(2) or P6(4), with unit-cell parameters a = b = 114.2, c = 61.0 A, alpha = beta = 90, gamma = 120 degrees . Each asymmetric unit contained one molecule.


Assuntos
Vírus da Bronquite Infecciosa/química , Proteínas Virais/química , Sequência de Bases , Cristalização , Cristalografia por Raios X , Primers do DNA , Mutação , Reação em Cadeia da Polimerase , Conformação Proteica
15.
Virology ; 531: 48-56, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30852271

RESUMO

Coronavirus membrane (M) protein is the most abundant structural protein playing a critical role in virion assembly. Previous studies show that the N-terminal ectodomain of M protein is modified by glycosylation, but its precise functions are yet to be thoroughly investigated. In this study, we confirm that N-linked glycosylation occurs at two predicted sites in the M protein ectodomain of infectious bronchitis coronavirus (IBV). Dual mutations at the two sites (N3D/N6D) did not affect particle assembly, virus-like particle formation and viral replication in culture cells. However, activation of the ER stress response was significantly reduced in cells infected with rN3D/N6D, correlated with a lower level of apoptosis and reduced production of pro-inflammatory cytokines. Taken together, this study demonstrates that although not essential for replication, glycosylation in the IBV M protein ectodomain plays important roles in activating ER stress, apoptosis and proinflammatory response, and may contribute to the pathogenesis of IBV.


Assuntos
Apoptose , Infecções por Coronavirus/fisiopatologia , Estresse do Retículo Endoplasmático , Vírus da Bronquite Infecciosa/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Proteínas M de Coronavírus , Citocinas/genética , Citocinas/imunologia , Glicosilação , Humanos , Vírus da Bronquite Infecciosa/química , Vírus da Bronquite Infecciosa/genética , Domínios Proteicos , Proteínas da Matriz Viral/genética
16.
Viruses ; 11(10)2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652591

RESUMO

Some coronaviruses (CoVs) have an extra furin cleavage site (RRKR/S, furin-S2' site) upstream of the fusion peptide in the spike protein, which plays roles in virion adsorption and fusion. Mutation of the S2' site of QX genotype (QX-type) infectious bronchitis virus (IBV) spike protein (S) in a recombinant virus background results in higher pathogenicity, pronounced neural symptoms and neurotropism when compared with conditions in wild-type IBV (WT-IBV) infected chickens. In this study, we present evidence suggesting that recombinant IBV with a mutant S2' site (furin-S2' site) leads to higher mortality. Infection with mutant IBV induces severe encephalitis and breaks the blood-brain barrier. The results of a neutralization test and immunoprotection experiment show that an original serum and vaccine can still provide effective protection in vivo and in vitro. This is the first demonstration of IBV-induced neural symptoms in chickens with encephalitis and the furin-S2' site as a determinant of neurotropism.


Assuntos
Infecções por Coronavirus/veterinária , Encefalite Viral/veterinária , Vírus da Bronquite Infecciosa/química , Neurônios/virologia , Glicoproteína da Espícula de Coronavírus/química , Tropismo Viral , Animais , Anticorpos Antivirais/sangue , Barreira Hematoencefálica/virologia , Galinhas/virologia , Infecções por Coronavirus/virologia , Furina/genética , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/fisiologia , Mutação , Organismos Livres de Patógenos Específicos , Glicoproteína da Espícula de Coronavírus/genética
17.
Avian Dis ; 62(2): 210-217, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29944406

RESUMO

We identified novel linear epitopes on the infectious bronchitis virus (IBV) spike S2 region. The conformational structure of the IBV spike protein was predicted from a homologous protein, human coronavirus NL63 spike. Although the obtained structure was incomplete, most of the IBV spike protein structure was predicted; the N-terminus of the S1 region could not be predicted due to its variability. In the model, the region located in the proximity of the fusion peptide appeared to be well conserved, and we evaluated the antigenicity of these domains, which are involved in the membrane fusion machinery. Western blotting revealed that IBV TM86 spike residues 686-723 were antigenic. Epitope mapping analysis using synthesized peptides revealed that IBV TM86 spike 669-685 (SNFSTGAFNISLLLTPP), 686-697 (SNPRGRSFIEDL), and 692-703 (SFIEDLLFTSVE) residues were major linear epitopes; two identified epitopes (686-697 and 692-703) were covered by the fusion peptide, and the other epitope (669-685) was adjacent to the fusion peptide. Although the identified epitopes are identically located as the neutralizing epitope in severe acute respiratory syndrome coronavirus, the recombinant protein that includes those epitopes could not elicit neutralizing antibodies against IBV. This is the first report describing IBV spike S2 epitopes located in the proximity of the fusion peptide, and it is suggested that the spike fusion machinery of IBV may differ from that of severe acute respiratory syndrome coronavirus, or, alternatively, IBV may have another mechanism to penetrate the cell membrane.


Assuntos
Infecções por Coronavirus/veterinária , Epitopos/imunologia , Vírus da Bronquite Infecciosa/imunologia , Doenças das Aves Domésticas/virologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Motivos de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Galinhas , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Mapeamento de Epitopos , Epitopos/química , Epitopos/genética , Vírus da Bronquite Infecciosa/química , Vírus da Bronquite Infecciosa/genética , Doenças das Aves Domésticas/imunologia , Glicoproteína da Espícula de Coronavírus/genética
18.
Mol Biotechnol ; 36(1): 32-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17827535

RESUMO

The size and diversity of ribosome display libraries depends upon stability of the complex formed between the ribosome, mRNA and translated protein. To investigate if mRNA secondary structure improves stability of the complex, we tested a pseudoknot, originating from the genomic RNA of infectious bronchitis virus (IBV), a member of the positive-stranded coronavirus group. We used the previously-isolated anti-DNA scFv, 3D8, as a target protein. During in vitro translation in rabbit reticulocyte lysate, we observed that incorporation of the pseudoknot into the mRNA resulted in production of a translational intermediate that corresponded to the expected size for ribosomal arrest at the pseudoknot. Complexes containing the mRNA pseudoknot exhibited a higher efficiency of affinity selection than that those without, indicating that the pseudoknot improves stability of the mRNA-ribosome-antibody complex in a eukaryotic translation system. Thus, in order to improve the efficiency of selection, this relatively short pseudoknot sequence could be incorporated into ribosome display.


Assuntos
Conformação de Ácido Nucleico , RNA Viral/química , Ribossomos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA/genética , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/genética , Vírus da Bronquite Infecciosa/química , Vírus da Bronquite Infecciosa/genética , Camundongos , Dados de Sequência Molecular , Plasmídeos , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Coelhos
19.
Protein Sci ; 26(5): 1037-1048, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28257598

RESUMO

The potential for infection by coronaviruses (CoVs) has become a serious concern with the recent emergence of Middle East respiratory syndrome and severe acute respiratory syndrome (SARS) in the human population. CoVs encode two large polyproteins, which are then processed into 15-16 nonstructural proteins (nsps) that make significant contributions to viral replication and transcription by assembling the RNA replicase complex. Among them, nsp9 plays an essential role in viral replication by forming a homodimer that binds single-stranded RNA. Thus, disrupting nsp9 dimerization is a potential anti-CoV therapy. However, different nsp9 dimer forms have been reported for alpha- and beta-CoVs, and no structural information is available for gamma-CoVs. Here we determined the crystal structure of nsp9 from the avian infectious bronchitis virus (IBV), a representative gamma-CoV that affects the economy of the poultry industry because it can infect domestic fowl. IBV nsp9 forms a homodimer via interactions across a hydrophobic interface, which consists of two parallel alpha helices near the carboxy terminus of the protein. The IBV nsp9 dimer resembles that of SARS-CoV nsp9, indicating that this type of dimerization is conserved among all CoVs. This makes disruption of the dimeric interface an excellent strategy for developing anti-CoV therapies. To facilitate this effort, we characterized the roles of six conserved residues on this interface using site-directed mutagenesis and a multitude of biochemical and biophysical methods. We found that three residues are critical for nsp9 dimerization and its abitlity to bind RNA.


Assuntos
Vírus da Bronquite Infecciosa/química , Multimerização Proteica , RNA Viral/química , Proteínas de Ligação a RNA/química , Proteínas Virais/química , Vírus da Bronquite Infecciosa/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Relação Estrutura-Atividade , Proteínas Virais/metabolismo
20.
J Virol Methods ; 131(1): 86-91, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16137773

RESUMO

The objective of the present study was to develop a multiplex polymerase chain reaction (PCR) method for differential detection of turkey coronavirus (TCoV), infectious bronchitis coronavirus (IBV), and bovine coronavirus (BCoV). Primers were designed from conserved or variable regions of nucleocapsid (N) or spike (S) protein gene among TCoV, IBV, and BCoV and used in the same PCR reaction. Reverse transcription followed by the PCR reaction was used to amplify a portion of N or S gene of the corresponding coronaviruses. The PCR products were detected on agarose gel stained with ethidium bromide. Two PCR products, a 356-bp band corresponding to N gene and a 727-bp band corresponding to S gene, were obtained for TCoV isolates. In contrast, one PCR product of 356 bp corresponding to a fragment of N gene was obtained for IBV strains and one PCR product of 568 bp corresponding to a fragment of S gene was obtained for BCoV. There were no PCR products with the same primers for Newcastle disease virus, Marek's disease virus, turkey pox virus, pigeon pox virus, fowl pox virus, reovirus, infectious bursal disease virus, enterovirus, astrovirus, Salmonella enterica, Escherichia coli, and Mycoplasma gallisepticum. Performance of the assay with serially diluted RNA demonstrated that the multiplex PCR could detect 4.8x10(-3) microg of TCoV RNA, 4.6x10(-4) microg of IBV RNA, and 8.0x10(-2) microg of BCoV RNA. These results indicated that the multiplex PCR as established in the present study is a rapid, sensitive, and specific method for differential detection of TCoV, IBV, and BCoV in a single PCR reaction.


Assuntos
Coronavirus Bovino/genética , Coronavirus do Peru/genética , Vírus da Bronquite Infecciosa/genética , Reação em Cadeia da Polimerase/métodos , Animais , Infecções por Coronavirus/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus , Coronavirus Bovino/química , Coronavirus do Peru/química , Primers do DNA , Genes Virais , Vírus da Bronquite Infecciosa/química , Glicoproteínas de Membrana/genética , Proteínas do Nucleocapsídeo/genética , RNA Viral/genética , Sensibilidade e Especificidade , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus , Perus , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA