RESUMO
The recent Middle East respiratory syndrome coronavirus (MERS-CoV), Ebola and Zika virus outbreaks exemplify the continued threat of (re-)emerging viruses to human health, and our inability to rapidly develop effective therapeutic countermeasures. Many viruses, including MERS-CoV and the Crimean-Congo hemorrhagic fever virus (CCHFV) encode deubiquitinating (DUB) enzymes that are critical for viral replication and pathogenicity. They bind and remove ubiquitin (Ub) and interferon stimulated gene 15 (ISG15) from cellular proteins to suppress host antiviral innate immune responses. A variety of viral DUBs (vDUBs), including the MERS-CoV papain-like protease, are responsible for cleaving the viral replicase polyproteins during replication, and are thereby critical components of the viral replication cycle. Together, this makes vDUBs highly attractive antiviral drug targets. However, structural similarity between the catalytic cores of vDUBs and human DUBs complicates the development of selective small molecule vDUB inhibitors. We have thus developed an alternative strategy to target the vDUB activity through a rational protein design approach. Here, we report the use of phage-displayed ubiquitin variant (UbV) libraries to rapidly identify potent and highly selective protein-based inhibitors targeting the DUB domains of MERS-CoV and CCHFV. UbVs bound the vDUBs with high affinity and specificity to inhibit deubiquitination, deISGylation and in the case of MERS-CoV also viral replicative polyprotein processing. Co-crystallization studies further revealed critical molecular interactions between UbVs and MERS-CoV or CCHFV vDUBs, accounting for the observed binding specificity and high affinity. Finally, expression of UbVs during MERS-CoV infection reduced infectious progeny titers by more than four orders of magnitude, demonstrating the remarkable potency of UbVs as antiviral agents. Our results thereby establish a strategy to produce protein-based inhibitors that could protect against a diverse range of viruses by providing UbVs via mRNA or protein delivery technologies or through transgenic techniques.
Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/virologia , Inibidores Enzimáticos/farmacologia , Vírus da Febre Hemorrágica da Crimeia-Congo/efeitos dos fármacos , Febre Hemorrágica da Crimeia/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Ubiquitina/metabolismo , Proteínas Virais/antagonistas & inibidores , Antivirais/química , Infecções por Coronavirus/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/metabolismo , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Ubiquitinação/efeitos dos fármacos , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
UNLABELLED: Crimean-Congo hemorrhagic fever virus (CCHFV; genus Nairovirus) is an extremely pathogenic member of the Bunyaviridae family. Since handling of the virus requires a biosafety level 4 (BSL-4) facility, little is known about pathomechanisms and host interactions. Here, we describe the establishment of a transcriptionally competent virus-like particle (tc-VLP) system for CCHFV. Recombinant polymerase (L), nucleocapsid protein (N) and a reporter minigenome expressed in human HuH-7 cells resulted in formation of transcriptionally active nucleocapsids that could be packaged by coexpressed CCHFV glycoproteins into tc-VLPs. The tc-VLPs resembled authentic virus particles in their protein composition and neutralization sensitivity to anti-CCHFV antibodies and could recapitulate all steps of the viral replication cycle. Particle attachment, entry, and primary transcription were modeled by infection of naive cells. The subsequent steps of genome replication, secondary transcription, and particle assembly and release can be obtained upon passaging the tc-VLPs on cells expressing CCHFV structural proteins. The utility of the VLP system was demonstrated by showing that the endonuclease domain of L is located around amino acid D693, as was predicted in silico by B. Morin et al. (PLoS Pathog 6:e1001038, 2010, http://dx.doi.org/10.1371/journal.ppat.1001038). The tc-VLP system will greatly facilitate studies and diagnostics of CCHFV under non-BSL-4 conditions. IMPORTANCE: Crimean-Congo hemorrhagic fever virus (CCHFV) is an extremely virulent pathogen of humans. Since the virus can be handled only at the highest biosafety level, research is restricted to a few specialized laboratories. We developed a plasmid-based system to produce virus-like particles with the ability to infect cells and transcribe a reporter genome. Due to the absence of viral genes, the virus-like particles are unable to spread or cause disease, thus allowing study of aspects of CCHFV biology under relaxed biosafety conditions.
Assuntos
Endonucleases/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Proteínas Virais/metabolismo , Virossomos/metabolismo , Linhagem Celular , RNA Polimerases Dirigidas por DNA/genética , Endonucleases/genética , Expressão Gênica , Genes Reporter , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Hepatócitos/virologia , Humanos , Proteínas do Nucleocapsídeo/genética , Estrutura Terciária de Proteína , Transcrição Gênica , Proteínas Virais/genética , Virossomos/genética , Montagem de Vírus , Ligação Viral , Internalização do VírusRESUMO
Protein ubiquitination regulates important innate immune responses. The discovery of viruses encoding deubiquitinating enzymes (DUBs) suggests they remove ubiquitin to evade ubiquitin-dependent antiviral responses; however, this has never been conclusively demonstrated in virus-infected cells. Arteriviruses are economically important positive-stranded RNA viruses that encode an ovarian tumor (OTU) domain DUB known as papain-like protease 2 (PLP2). This enzyme is essential for arterivirus replication by cleaving a site within the viral replicase polyproteins and also removes ubiquitin from cellular proteins. To dissect this dual specificity, which relies on a single catalytic site, we determined the crystal structure of equine arteritis virus PLP2 in complex with ubiquitin (1.45 Å). PLP2 binds ubiquitin using a zinc finger that is uniquely integrated into an exceptionally compact OTU-domain fold that represents a new subclass of zinc-dependent OTU DUBs. Notably, the ubiquitin-binding surface is distant from the catalytic site, which allowed us to mutate this surface to significantly reduce DUB activity without affecting polyprotein cleavage. Viruses harboring such mutations exhibited WT replication kinetics, confirming that PLP2-mediated polyprotein cleavage was intact, but the loss of DUB activity strikingly enhanced innate immune signaling. Compared with WT virus infection, IFN-ß mRNA levels in equine cells infected with PLP2 mutants were increased by nearly an order of magnitude. Our findings not only establish PLP2 DUB activity as a critical factor in arteriviral innate immune evasion, but the selective inactivation of DUB activity also opens unique possibilities for developing improved live attenuated vaccines against arteriviruses and other viruses encoding similar dual-specificity proteases.
Assuntos
Endopeptidases/metabolismo , Equartevirus/enzimologia , Fibroblastos/imunologia , Fibroblastos/virologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Papaína/metabolismo , Animais , Proteases Semelhantes à Papaína de Coronavírus , Endopeptidases/química , Endopeptidases/genética , Equartevirus/fisiologia , Células HEK293 , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Cavalos , Humanos , Interferon beta/genética , Modelos Moleculares , Mutação/genética , Papaína/química , Papaína/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais/imunologia , Especificidade por Substrato , Ubiquitina/química , Replicação Viral , Dedos de ZincoRESUMO
Crimean-Congo hemorrhagic fever virus (CCHFV) is a deadly virus that has been listed in the Category C as a potential bioterror agent. There are no specific therapies against CCHFV, which urges identification of potential therapeutic targets and development of CCHFV therapies. CCHFV OTU protease takes an important role in viral invasion through antagonizing NF-κB signaling. Inhibition of CCHFV OTU protease by small molecules warrants an exciting potential as antiviral therapeutics. Here we report the expression and purification of a C-His-tagged recombinant CCHFV OTU protease in E. coli BL21 (DE3) host strain. Activity of the refolded purified recombinant viral OTU protease has been validated with a UB-AMC fluorescent assay. In addition, we show a dose-dependent inhibition of the viral OTU protease by two small molecules. This study provides a reliable approach for recombinant expression and purification of CCHFV OTU protease, and demonstrates validation of OTU protease activity and its inhibition based on a UB-AMC florescent assay.
Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Fluorometria/métodos , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/análise , Proteínas Virais/metabolismo , Escherichia coli/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Peptídeo Hidrolases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virais/genéticaRESUMO
Crimean-Congo hemorrhagic fever virus (CCHFV), a virus with high mortality in humans, is a member of the genus Nairovirus in the family Bunyaviridae, and is a causative agent of severe hemorrhagic fever (HF). It is classified as a biosafety level 4 pathogen and a potential bioterrorism agent due to its aerosol infectivity and its ability to cause HF outbreaks with high case fatality (â¼30%). However, little is known about the structural features and function of nucleoproteins (NPs) in the Bunyaviridae, especially in CCHFV. Here we report a 2.3-Å resolution crystal structure of the CCHFV nucleoprotein. The protein has a racket-shaped overall structure with distinct "head" and "stalk" domains and differs significantly with NPs reported so far from other negative-sense single-stranded RNA viruses. Furthermore, CCHFV NP shows a distinct metal-dependent DNA-specific endonuclease activity. Single residue mutations in the predicted active site resulted in a significant reduction in the observed endonuclease activity. Our results present a new folding mechanism and function for a negative-strand RNA virus nucleoprotein, extend our structural insight into bunyavirus NPs, and provide a potential target for antiviral drug development to treat CCHFV infection.
Assuntos
Endonucleases/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Nucleoproteínas/metabolismo , Orthobunyavirus/enzimologia , Proteínas Virais/metabolismo , Cromatografia em Gel , Cristalografia por Raios X , DNA Viral/metabolismo , Endonucleases/química , Interações Hospedeiro-Patógeno/imunologia , Modelos Moleculares , Nucleoproteínas/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Capuzes de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/químicaRESUMO
The attachment of ubiquitin (Ub) and the Ub-like (Ubl) molecule interferon-stimulated gene 15 (ISG15) to cellular proteins mediates important innate antiviral responses. Ovarian tumor (OTU) domain proteases from nairoviruses and arteriviruses were recently found to remove these molecules from host proteins, which inhibits Ub and ISG15-dependent antiviral pathways. This contrasts with the Ub-specific activity of known eukaryotic OTU-domain proteases. Here we describe crystal structures of a viral OTU domain from the highly pathogenic Crimean-Congo haemorrhagic fever virus (CCHFV) bound to Ub and to ISG15 at 2.5-Å and 2.3-Å resolution, respectively. The complexes provide a unique structural example of ISG15 bound to another protein and reveal the molecular mechanism of an ISG15 cross-reactive deubiquitinase. To accommodate structural differences between Ub and ISG15, the viral protease binds the ß-grasp folds of Ub and C-terminal Ub-like domain of ISG15 in an orientation that is rotated nearly 75° with respect to that observed for Ub bound to a representative eukaryotic OTU domain from yeast. Distinct structural determinants necessary for binding either substrate were identified and allowed the reengineering of the viral OTU protease into enzymes with increased substrate specificity, either for Ub or for ISG15. Our findings now provide the basis to determine in vivo the relative contributions of deubiquitination and deISGylation to viral immune evasion tactics, and a structural template of a promiscuous deubiquitinase from a haemorrhagic fever virus that can be targeted for inhibition using small-molecule-based strategies.
Assuntos
Citocinas/química , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Peptídeo Hidrolases/química , Ubiquitinas/química , Proteínas Virais/química , Cristalografia por Raios X , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Humanos , Neoplasias Ovarianas , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Ubiquitina/química , Ubiquitina/genética , Ubiquitina/imunologia , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/imunologia , Ubiquitinas/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Crimean Congo hemorrhagic fever virus (CCHFV) is a deadly human pathogen that evades innate immune responses by efficiently interfering with antiviral signaling pathways mediated by NF-κB, IRF3, and IFNα/ß. These pathways rely on protein ubiquitination for their activation, and one outcome is the modification of proteins with the ubiquitin (Ub)-like modifier interferon-stimulated gene (ISG)15. CCHFV and related viruses encode a deubiquitinase (DUB) of the ovarian tumor (OTU) family, which unlike eukaryotic OTU DUBs also targets ISG15 modifications. Here we characterized the viral OTU domain of CCHFV (vOTU) biochemically and structurally, revealing that it hydrolyzes four out of six tested Ub linkages, but lacks activity against linear and K29-linked Ub chains. vOTU cleaved Ub and ISG15 with similar kinetics, and we were able to understand vOTU cross-reactivity at the molecular level from crystal structures of vOTU in complex with Ub and ISG15. An N-terminal extension in vOTU not present in eukaryotic OTU binds to the hydrophobic Ile44 patch of Ub, which results in a dramatically different Ub orientation compared to a eukaryotic OTU-Ub complex. The C-terminal Ub-like fold of ISG15 (ISG15-C) adopts an equivalent binding orientation. Interestingly, ISG15-C contains an additional second hydrophobic surface that is specifically contacted by vOTU. These subtle differences in Ub/ISG15 binding allowed the design of vOTU variants specific for either Ub or ISG15, which will be useful tools to understand the relative contribution of ubiquitination vs. ISGylation in viral infection. Furthermore, the crystal structures will allow structure-based design of antiviral agents targeting this enzyme.
Assuntos
Citocinas/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Neoplasias Ovarianas , Peptídeo Hidrolases/imunologia , Ubiquitina/imunologia , Ubiquitinação/imunologia , Ubiquitinas/imunologia , Proteínas Virais/imunologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Humanos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Crimean-Congo hemorrhagic fever (CCHF) virus is a tick-borne, negative-sense, single-stranded RNA [ssRNA(-)] nairovirus that produces fever, prostration, and severe hemorrhages in humans. With fatality rates for CCHF ranging up to 70% based on several factors, CCHF is considered a dangerous emerging disease. Originally identified in the former Soviet Union and the Congo, CCHF has rapidly spread across large sections of Europe, Asia, and Africa. Recent reports have identified a viral homologue of the ovarian tumor protease superfamily (vOTU) within its L protein. This protease has subsequently been implicated in downregulation of the type I interferon immune response through cleavage of posttranslational modifying proteins ubiquitin (Ub) and the Ub-like interferon-simulated gene 15 (ISG15). Additionally, homologues of vOTU have been suggested to perform similar roles in the positive-sense, single-stranded RNA [ssRNA(+)] arteriviruses. By utilizing X-ray crystallographic techniques, the structure of vOTU covalently bound to ubiquitin propylamine, a suicide substrate of the enzyme, was elucidated to 1.7 Å, revealing unique structural elements that define this new subclass of the OTU superfamily. In addition, kinetic studies were carried out with aminomethylcoumarin (AMC) conjugates of monomeric Ub, ISG15, and NEDD8 (neural precursor cell expressed, developmentally downregulated 8) substrates in order to provide quantitative insights into vOTU's preference for Ub and Ub-like substrates.
Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/química , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Peptídeo Hidrolases/química , Ubiquitina/química , Proteínas Virais/química , Sequência de Aminoácidos , Cristalografia por Raios X , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos , Ubiquitina/metabolismo , Proteínas Virais/metabolismoRESUMO
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus (genus Nairovirus, family Bunyaviridae) associated with high case fatality disease outbreaks in regions of Africa, Europe, and Asia. The CCHFV genome consists of three negative-strand RNA segments, S, M, and L. The unusually large virus L polymerase protein and the need for biosafety level 4 (BSL-4) containment conditions for work with infectious virus have hampered the study of CCHFV replication. The L protein has an ovarian tumor (OTU) protease domain located in the N terminus, which has led to speculation that the protein may be autoproteolytically cleaved to generate the active virus L polymerase and additional functions. We report the successful development of efficient CCHFV helper virus-independent S, M, and L segment minigenome systems for analysis of virus RNA and protein features involved in replication. The virus RNA segment S, M, and L untranslated regions were found to be similar in support of replication of the respective minigenomes. In addition, the OTU domain located in the N terminus of the expressed virus L protein was shown to be a functional protease. However, no evidence of L protein autoproteolytic processing was found, and the OTU protease activity was dispensable for virus RNA replication. Finally, physiologically relevant doses of ribavirin inhibited CCHFV minigenome replication. These results demonstrated the utility of the minigenome system for use in BSL-2 laboratory settings to analyze CCHFV biology and in antiviral drug discovery programs for this important public health and bioterrorism threat.
Assuntos
RNA Polimerases Dirigidas por DNA/fisiologia , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Peptídeo Hidrolases/metabolismo , Feminino , Genoma Viral , Vírus da Febre Hemorrágica da Crimeia-Congo/química , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Humanos , Neoplasias Ovarianas/enzimologia , Peptídeo Hidrolases/fisiologia , Estrutura Terciária de Proteína , RNA Viral , Ribavirina/farmacologia , Replicação ViralRESUMO
BACKGROUND: The Crimean-Congo hemorrhagic fever virus (CCHFV) is a segmented negative-sense RNA virus that can cause severe human disease. The World Health Organization (WHO) has listed CCHFVas a priority pathogen with an urgent need for enhanced research activities to develop effective countermeasures. Here we adopted a biochemical approach that targets the viral RNA-dependent RNA polymerase (RdRp). The CCHFV RdRp activity is part of a multifunctional L protein that is unusually large with a molecular weight of ~450 kDa. The CCHFV L-protein also contains an ovarian tumor (OTU) domain that exhibits deubiquitinating (DUB) activity, which was shown to interfere with innate immune responses and viral replication. We report on the expression, characterization and inhibition of the CCHFV full-length L-protein and studied both RNA synthesis and DUB activity. METHODOLOGY/PRINCIPLE FINDINGS: Recombinant full-length CCHFV L protein was expressed in insect cells and purified to near homogeneity using affinity chromatography. RdRp activity was monitored with model primer/templates during elongation in the presence of divalent metal ions. We observed a 14-mer full length RNA product as well as the expected shorter products when omitting certain nucleotides from the reaction mixture. The D2517N mutation of the putative active site rendered the enzyme inactive. Inhibition of RNA synthesis was studies with the broad-spectrum antivirals ribavirin and favipiravir that mimic nucleotide substrates. The triphosphate form of these compounds act like ATP or GTP; however, incorporation of ATP or GTP is markedly favored over the inhibitors. We also studied the effects of bona fide nucleotide analogues 2'-deoxy-2'-fluoro-CTP (FdC) and 2'-deoxy-2'-amino-CTP and demonstrate increased inhibitory effects due to higher rates of incorporation. We further show that the CCHFV L full-length protein and the isolated OTU domain cleave Lys48- and Lys63-linked polyubiqutin chains. Moreover, the ubiquitin analogue CC.4 inhibits the CCHFV-associated DUB activity of the full-length L protein and the isolated DUB domain to a similar extent. Inhibition of DUB activity does not affect elongation of RNA synthesis, and inhibition of RNA synthesis does not affect DUB activity. Both domains are functionally independent under these conditions. CONCLUSIONS/SIGNIFICANCE: The requirements for high biosafety measures hamper drug discovery and development efforts with infectious CCHFV. The availability of full-length CCHFV L-protein provides an important tool in this regard. High-throughput screening (HTS) campaigns are now feasible. The same enzyme preparations can be employed to identify novel polymerase and DUB inhibitors.
Assuntos
RNA Polimerases Dirigidas por DNA/fisiologia , Enzimas Desubiquitinantes/fisiologia , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Replicação Viral/efeitos dos fármacos , Amidas/farmacologia , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/virologia , Humanos , Mutação , Estrutura Terciária de Proteína , Pirazinas/farmacologia , RNA Viral , Ribavirina/farmacologiaRESUMO
The Crimean-Congo Hemorrhagic Fever virus (CCHFV) is a segmented negative single-stranded RNA virus (-ssRNA) which causes severe hemorrhagic fever in humans with a mortality rate of ~50%. To date, no vaccine has been approved. Treatment is limited to supportive care with few investigational drugs in practice. Previous studies have identified viral RNA dependent RNA Polymerase (RdRp) as a potential drug target due to its significant role in viral replication and transcription. Since no crystal structure is available yet, we report the structural elucidation of CCHFV-RdRp by in-depth homology modeling. Even with low sequence identity, the generated model suggests a similar overall structure as previously reported RdRps. More specifically, the model suggests the presence of structural/functional conserved RdRp motifs for polymerase function, the configuration of uniform spatial arrangement of core RdRp sub-domains, and predicted positively charged entry/exit tunnels, as seen in sNSV polymerases. Extensive pharmacophore modeling based on per-residue energy contribution with investigational drugs allowed the concise mapping of pharmacophoric features and identified potential hits. The combination of pharmacophoric features with interaction energy analysis revealed functionally important residues in the conserved motifs together with in silico predicted common inhibitory binding modes with highly potent reference compounds.
Assuntos
Antivirais/química , Descoberta de Drogas , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Modelos Moleculares , RNA Polimerase Dependente de RNA/química , Aminoácidos , Antivirais/farmacologia , Sítios de Ligação , Domínio Catalítico , Descoberta de Drogas/métodos , Vírus da Febre Hemorrágica da Crimeia-Congo/efeitos dos fármacos , Humanos , Conformação Molecular , Estrutura Molecular , Ligação Proteica , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacosRESUMO
Crimean-Congo hemorrhagic fever virus (CCHFV) infection can result in a severe hemorrhagic syndrome for which there are no antiviral interventions available to date. Certain RNA viruses, such as CCHFV, encode cysteine proteases of the ovarian tumor (OTU) family that antagonize interferon (IFN) production by deconjugating ubiquitin (Ub). The OTU of CCHFV, a negative-strand RNA virus, is dispensable for replication of the viral genome, despite being part of the large viral RNA polymerase. Here, we show that mutations that prevent binding of the OTU to cellular ubiquitin are required for the generation of recombinant CCHFV containing a mutated catalytic cysteine. Similarly, the high-affinity binding of a synthetic ubiquitin variant (UbV-CC4) to CCHFV OTU strongly inhibits viral growth. UbV-CC4 inhibits CCHFV infection even in the absence of intact IFN signaling, suggesting that its antiviral activity is not due to blocking the OTU's immunosuppressive function. Instead, the prolonged occupancy of the OTU with UbV-CC4 directly targets viral replication by interfering with CCHFV RNA synthesis. Together, our data provide mechanistic details supporting the development of antivirals targeting viral OTUs.IMPORTANCE Crimean-Congo hemorrhagic fever virus is an important human pathogen with a wide global distribution for which no therapeutic interventions are available. CCHFV encodes a cysteine protease belonging to the ovarian tumor (OTU) family which is involved in host immune suppression. Here we demonstrate that artificially prolonged binding of the OTU to a substrate inhibits virus infection. This provides novel insights into CCHFV OTU function during the viral replicative cycle and highlights the OTU as a potential antiviral target.
Assuntos
Cisteína Proteases/metabolismo , Enzimas Desubiquitinantes/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Ubiquitina/farmacologia , Replicação Viral , Animais , Linhagem Celular Tumoral , Cisteína Proteases/genética , Citocinas/genética , Citocinas/metabolismo , Enzimas Desubiquitinantes/genética , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Humanos , Camundongos , Mutação , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Ubiquitinação , Ubiquitinas/genética , Ubiquitinas/metabolismoRESUMO
The recently developed Crimean-Congo hemorrhagic fever virus (CCHFV) reverse genetics systems have paved the way for experiments looking to identify and characterize the roles played by viral and cellular proteins in the CCHFV life cycle. In particular, the development of the noninfectious minigenome and virus-like particle (VLP) systems is a tremendous technological advance, as these systems allow for precisely targeting proteins or nucleic acids and measuring the effects these mutations or treatments have on viral life cycle stages. Importantly, these systems can be used at low-containment levels. Presented are the materials and methods currently available to study CCHFV transcription, replication, and translation in the context of a minigenome or VLP.
Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Animais , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Humanos , Mutação/genética , Ácidos Nucleicos/genética , Ácidos Nucleicos/metabolismo , RNA Viral/genética , Replicação Viral/genética , Replicação Viral/fisiologiaRESUMO
BACKGROUND: Crimean-Congo Haemorrhagic fever Virus (CCHFV) is a rapidly emerging vector-borne pathogen and the cause of a virulent haemorrhagic fever affecting large parts of Europe, Africa, the Middle East and Asia. METHODOLOGY/PRINCIPLE FINDINGS: An isothermal recombinase polymerase amplification (RPA) assay was successfully developed for molecular detection of CCHFV. The assay showed rapid (under 10 minutes) detection of viral extracts/synthetic virus RNA of all 7 S-segment clades of CCHFV, with high target specificity. The assay was shown to tolerate the presence of inhibitors in crude preparations of mock field samples, indicating that this assay may be suitable for use in the field with minimal sample preparation. The CCHFV RPA was successfully used to screen and detect CCHFV positives from a panel of clinical samples from Tajikistan. CONCLUSIONS/SIGNIFICANCE: The assay is a rapid, isothermal, simple-to-perform molecular diagnostic, which can be performed on a light, portable real-time detection device. It is ideally placed therefore for use as a field-diagnostic or in-low resource laboratories, for monitoring of CCHF outbreaks at the point-of-need, such as in remote rural regions in affected countries.
Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Febre Hemorrágica da Crimeia/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sistemas Automatizados de Assistência Junto ao Leito , África/epidemiologia , Ásia/epidemiologia , Europa (Continente)/epidemiologia , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/virologia , Humanos , Oriente Médio/epidemiologia , Técnicas de Diagnóstico Molecular/economia , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Amplificação de Ácido Nucleico/economia , Técnicas de Amplificação de Ácido Nucleico/instrumentação , RNA Viral/análise , RNA Viral/genética , Recombinases/metabolismo , Sensibilidade e Especificidade , Tadjiquistão/epidemiologia , Fatores de TempoRESUMO
OBJECTIVE: Crimean-Congo hemorrhagic fever is an acute viral hemorrhagic fever with a high mortality rate. Despite increasing knowledge about hemorrhagic fever viruses, little is known about the pathogenesis of Crimean-Congo hemorrhagic fever. In this study, we measured serum adenosine deaminase and xanthine oxidase levels in Crimean-Congo hemorrhagic fever patients. METHODS: Serum adenosine deaminase levels were measured with a sensitive colorimetric method described by Giusti and xanthine oxidase levels by the method of Worthington in 30 consecutive hospitalized patients (mean age 42.6 +/- 21.0). Laboratory tests confirmed their diagnoses of Crimean-Congo hemorrhagic fever. Thirty-five subjects (mean age 42.9 +/- 19.1) served as the control group. RESULTS: There was a significant difference in adenosine deaminase and xanthine oxidase levels between cases and controls (p<0.05). However, neither adenosine deaminase nor xanthine oxidase levels varied with the severity of disease in the cases assessed (p>0.05). CONCLUSION: Adenosine deaminase and xanthine oxidase levels were increased in patients with Crimean-Congo hemorrhagic fever. Elevated serum xanthine oxidase activity in patients with Crimean-Congo hemorrhagic fever may be associated with reactive oxygen species generated by the xanthine/xanthine oxidase system during inflammatory responses. In addition, elevated lipid peroxidation may contribute to cell damage and hemorrhage. The association of cell damage and hemorrhage with xanthine oxidase activity should be further investigated in large-scale studies.
Assuntos
Adenosina Desaminase/sangue , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Xantina Oxidase/sangue , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Colorimetria , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Índice de Gravidade de Doença , Turquia , Adulto JovemRESUMO
OBJECTIVE: Crimean-Congo hemorrhagic fever is an acute viral hemorrhagic fever with a high mortality rate. Despite increasing knowledge about hemorrhagic fever viruses, little is known about the pathogenesis of Crimean-Congo hemorrhagic fever. In this study, we measured serum adenosine deaminase and xanthine oxidase levels in Crimean-Congo hemorrhagic fever patients. METHODS: Serum adenosine deaminase levels were measured with a sensitive colorimetric method described by Giusti and xanthine oxidase levels by the method of Worthington in 30 consecutive hospitalized patients (mean age 42.6 ± 21.0). Laboratory tests confirmed their diagnoses of Crimean-Congo hemorrhagic fever. Thirty-five subjects (mean age 42.9 ± 19.1) served as the control group. RESULTS: There was a significant difference in adenosine deaminase and xanthine oxidase levels between cases and controls (p<0.05). However, neither adenosine deaminase nor xanthine oxidase levels varied with the severity of disease in the cases assessed (p>0.05). CONCLUSION: Adenosine deaminase and xanthine oxidase levels were increased in patients with Crimean-Congo hemorrhagic fever. Elevated serum xanthine oxidase activity in patients with Crimean-Congo hemorrhagic fever may be associated with reactive oxygen species generated by the xanthine/xanthine oxidase system during inflammatory responses. In addition, elevated lipid peroxidation may contribute to cell damage and hemorrhage. The association of cell damage and hemorrhage with xanthine oxidase activity should be further investigated in large-scale studies.
Assuntos
Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Adenosina Desaminase/sangue , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Xantina Oxidase/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Colorimetria , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Estudos Prospectivos , Índice de Gravidade de Doença , TurquiaRESUMO
Crimean-Congo hemorrhagic fever (CCHF) virus is highly pathogenic for humans and remains the only Category A virus for which full sequence information is currently unavailable. In this study we completed CCHF genome characterization by determining the L segment sequence using Dugbe and CCHF virus-specific oligonucleotides. Sequence alignments revealed the presence of four previously described conserved regions in all Bunyaviridae polymerases. Interestingly, additional regions containing putative Ovarian Tumor (OTU)-like cysteine protease and helicase domains were identified in the L segments of CCHF and Dugbe viruses, suggesting an autoproteolytic cleavage process for nairovirus L proteins.
Assuntos
Genoma Viral , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , RNA Polimerase Dependente de RNA/genética , Sequência de Aminoácidos , Clonagem Molecular , Cisteína Endopeptidases/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/classificação , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Dados de Sequência Molecular , Fases de Leitura Aberta , Estrutura Terciária de Proteína/genética , RNA Helicases/genética , Alinhamento de SequênciaRESUMO
Sequence analysis of the L RNA genome segment and predicted encoded L polymerase protein of Crimean-Congo hemorrhagic fever (CCHF) virus (genus Nairovirus, family Bunyaviridae) demonstrates that they are approximately twice the size of those found in viruses of other bunyavirus genera. The CCHF virus L segment and encoded protein (12,164 nucleotides and 3944 amino acids, respectively) are similar in size and sequence to those of the nairovirus Dugbe virus (12,255/62% and 4036/62% nucleotide and amino acid length/identity, respectively). The identification of an ovarian tumor (OTU)-like protease motif in the L protein amino termini of the nairoviruses Dugbe, CCHF, and Nairobi sheep disease (NSD) indicates these proteins are members of the recently described OTU-like protease family and suggests that these large proteins may be polyproteins that are autoproteolytically cleaved or involved in deubiquitination.