RESUMO
Mycobacterium tuberculosis (M.tb.) infection leads to over 1.5 million deaths annually, despite widespread vaccination with BCG at birth. Causes for the ongoing tuberculosis endemic are complex and include the failure of BCG to protect many against progressive pulmonary disease. Host genetics is one of the known factors implicated in susceptibility to primary tuberculosis, but less is known about the role that host genetics plays in controlling host responses to vaccination against M.tb. Here, we addressed this gap by utilizing Diversity Outbred (DO) mice as a small animal model to query genetic drivers of vaccine-induced protection against M.tb. DO mice are a highly genetically and phenotypically diverse outbred population that is well suited for fine genetic mapping. Similar to outcomes in people, our previous studies demonstrated that DO mice have a wide range of disease outcomes following BCG vaccination and M.tb. challenge. In the current study, we used a large population of BCG-vaccinated/M.tb.-challenged mice to perform quantitative trait loci mapping of complex infection traits; these included lung and spleen M.tb. burdens, as well as lung cytokines measured at necropsy. We found sixteen chromosomal loci associated with complex infection traits and cytokine production. QTL associated with bacterial burdens included a region encoding major histocompatibility antigens that are known to affect susceptibility to tuberculosis, supporting validity of the approach. Most of the other QTL represent novel associations with immune responses to M.tb. and novel pathways of cytokine regulation. Most importantly, we discovered that protection induced by BCG is a multigenic trait, in which genetic loci harboring functionally-distinct candidate genes influence different aspects of immune responses that are crucial collectively for successful protection. These data provide exciting new avenues to explore and exploit in developing new vaccines against M.tb.
Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Humanos , Animais , Camundongos , Vacina BCG/genética , Tuberculose/genética , Tuberculose/prevenção & controle , Tuberculose/microbiologia , Vacinas contra a Tuberculose/genética , Vacinação , Loci Gênicos , Citocinas/genética , Antígenos de BactériasRESUMO
COVID-19 has accounted for more than 6 million deaths worldwide. Bacillus Calmette-Guérin (BCG), the existing tuberculosis vaccine, is known to induce heterologous effects over other infections due to trained immunity and has been proposed to be a potential strategy against SARS-CoV-2 infection. In this report, we constructed a recombinant BCG (rBCG) expressing domains of the SARS-CoV-2 nucleocapsid and spike proteins (termed rBCG-ChD6), recognized as major candidates for vaccine development. We investigated whether rBCG-ChD6 immunization followed by a boost with the recombinant nucleocapsid and spike chimera (rChimera), together with alum, provided protection against SARS-CoV-2 infection in K18-hACE2 mice. A single dose of rBCG-ChD6 boosted with rChimera associated with alum elicited the highest anti-Chimera total IgG and IgG2c Ab titers with neutralizing activity against SARS-CoV-2 Wuhan strain when compared with control groups. Importantly, following SARS-CoV-2 challenge, this vaccination regimen induced IFN-γ and IL-6 production in spleen cells and reduced viral load in the lungs. In addition, no viable virus was detected in mice immunized with rBCG-ChD6 boosted with rChimera, which was associated with decreased lung pathology when compared with BCG WT-rChimera/alum or rChimera/alum control groups. Overall, our study demonstrates the potential of a prime-boost immunization system based on an rBCG expressing a chimeric protein derived from SARS-CoV-2 to protect mice against viral challenge.
Assuntos
COVID-19 , Mycobacterium bovis , Animais , Camundongos , Vacina BCG/genética , Proteínas Recombinantes de Fusão/genética , SARS-CoV-2 , Vacinas Sintéticas , COVID-19/prevenção & controle , Mycobacterium bovis/genéticaRESUMO
Vaccination is an important factor in public health. The recombinant bacillus Calmette Guérin (rBCG) vaccine, which expresses foreign antigens, is expected to be a superior vaccine against infectious diseases. Here, we report a new recombination platform in which the BCG Tokyo strain is transformed with nucleotide sequences encoding foreign protein fused with the MPB70 immunogenic protein precursor. By RNA-sequencing, mpb70 was found to be the most transcribed among all known genes of BCG Tokyo. Small oligopeptide, namely, polyhistidine tag, was able to be expressed in and secreted from rBCG through a process in which polyhistidine tag fused with intact MPB70 were transcribed by an mpb70 promoter. This methodology was applied to develop an rBCG expressing the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2. Immunoblotting images and mass spectrometry data showed that RBD was also secreted from rBCG. Sera from mice vaccinated with the rBCG showed a tendency of weak neutralizing capacity. The secretion was retained even after a freeze-drying process. The freeze-dried rBCG was administered to and recovered from mice. Recovered rBCG kept secreting RBD. Collectively, our recombination platform offers stable secretion of foreign antigens and can be applied to the development of practical rBCGs.
Assuntos
Vacina BCG , Mycobacterium bovis , Animais , Camundongos , Vacina BCG/genética , Tóquio , Mycobacterium bovis/genética , Ativação Linfocitária , Engenharia Genética , Vacinas SintéticasRESUMO
BACKGROUND: Bacillus Calmette-Guérin (BCG) remains the only vaccine to prevent tuberculosis (TB) during childhood, with relatively low to no efficacy against pulmonary TB in adolescents and adults. BCG consists of close to 15 different substrains, where genetic variations among them might contribute to the variable protective efficacy afforded against pulmonary TB. We have shown that the vaccine candidate, BCGΔBCG1419c, which is based on BCG Pasteur, improved protection against chronic TB in murine models, as well as against pulmonary and extrapulmonary TB in guinea pigs. Here, to confirm deletion of the BCG1419c gene and to detect possible genetic variations occurring as a consequence of the spontaneous mutations that may arise during in vitro culture of mycobacteria, the genomes of BCG Pasteur ATCC 35734 and its isogenic derivative, BCGΔBCG1419c, were sequenced and subjected to a comparative analysis between them and against BCG Pasteur 1173P2. RESULTS: The complete catalog of variants in genes relative to the reference genome BCG Pasteur 1173P2 (GenBank NC008769) showed that the parental strain BCG Pasteur ATCC 35734, from which the mutant BCGΔBCG1419c originated, showed five synonymous mutations, three missense mutations, and five codon insertions, whereas the BCGΔBCG1419c mutant reported the same changes. When BCG Pasteur ATCC 35734 and BCGΔBCG1419c were compared, we confirmed that the latter was devoid of the BCG1419c gene, with only one unanticipated SNP at position 2, 828, 791 which we consider has no role in vaccine properties reported thus far. CONCLUSION: We provide evidence that the mutagenesis performed to remove BCG1419c from BCG Pasteur ATCC 35734 solely deleted this gene, and that compared with the reference strain BCG Pasteur 1173P2, few changes were present confirming that they are BCG Pasteur strains, and that changes in immunogenicity or efficacy observed thus far in BCGΔBCG1419c are most likely derived solely from the elimination of the BCG1419c gene.
Assuntos
Mycobacterium bovis , Tuberculose Pulmonar , Tuberculose , Animais , Camundongos , Cobaias , Vacina BCG/genética , Mycobacterium bovis/genética , Tuberculose/microbiologia , GenomaRESUMO
BACKGROUND: The Bacille Calmette-Guérin (BCG) vaccine comprises a family of strains with variable protective efficacy against pulmonary tuberculosis (TB) and leprosy, partly due to genetic differences between strains. OBJECTIVES: Previous data highlighting differences between the genomes and proteomic profiles of BCG strains Moreau and Pasteur led us to evaluate their behaviour in the macrophage microenvironment, capable of stimulating molecular responses that can impact the protective effect of the vaccine. METHODS: Strain infectivity, viability, co-localisation with acidified vesicles, macrophage secretion of IL-1 and MCP-1 and lipid droplet biogenesis were evaluated after infection. FINDINGS: We found that BCG Moreau is internalised more efficiently, with significantly better intracellular survival up to 96 h p.i., whereas more BCG Pasteur bacilli were found co-localised in acidified vesicles up to 6 h p.i. IL-1ß and MCP-1 secretion and lipid droplet biogenesis by infected macrophages were more prominent in response to BCG Pasteur. MAIN CONCLUSION: Overall, our results show that, compared to Pasteur, BCG Moreau has increased fitness and better endurance in the harsh intracellular environment, also regulating anti-microbial responses (lower IL-1b and MCP-1). These findings contribute to the understanding of the physiology of BCG Moreau and Pasteur in response to the intraphagosomal environment in a THP-1 macrophage model.
Assuntos
Mycobacterium bovis , Tuberculose Pulmonar , Humanos , Mycobacterium bovis/genética , Vacina BCG/genética , Proteômica , Tuberculose Pulmonar/prevenção & controle , MacrófagosRESUMO
BACKGROUND: Bacillus Calmette-Guérin (BCG) refers to a group of vaccine strains with unique genetic characteristics. BCG is the only available vaccine for preventing tuberculosis (TB). Genetic and biochemical variations among the BCG vaccine strains have been considered as one of the significant parameters affecting the variable protective efficacy of the vaccine against pulmonary tuberculosis. To track genetic variations, here two vaccine strains (Danish 1331 and Pasteur 1173P2) popularly used according to the BCG World Atlas were subjected to a comparative analysis against the Mycobacterium tuberculosis H37Rv, Mycobacterium bovis AF2122/97, and Mycobacterium tuberculosis variant bovis BCG str. Pasteur 1173P2 reference genomes. Besides, the presence or absence of the experimentally verified human T cell epitopes was examined. RESULTS: Only two variants were identified in BCG Danish 1331 that have not been reported previously in any BCG strains with the complete submitted genome yet. Furthermore, we identified a DU1-like 14,577 bp region in BCG Danish 1331; The duplication which was previously seemed to be exclusive to the BCG Pasteur. We also found that 35% of the T cell epitopes are absent from both strains, and epitope sequences are more conserved than the rest of the genome. CONCLUSIONS: We provided a comprehensive catalog of single nucleotide polymorphisms (SNPs) and short insertions and deletions (indels) in BCG Danish 1331 and BCG Pasteur 1173P2. These findings may help determine the effect of genetic variations on the variable protective efficacy of BCG vaccine strains.
Assuntos
Vacina BCG , Mycobacterium bovis , Mycobacterium tuberculosis , Vacina BCG/genética , Epitopos de Linfócito T/genética , Genômica , Humanos , Mycobacterium bovis/genética , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Tuberculose/microbiologia , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/genéticaRESUMO
BACKGROUND: Joint replacement is an effective intervention and prosthetic joint infection (PJI) is one of the most serious complications of such surgery. Diagnosis of PJI is often complex and requires multiple modalities of investigation. We describe a rare cause of PJI which highlights these challenges and the role of whole-genome sequencing to achieve a rapid microbiological diagnosis to facilitate prompt and appropriate management. CASE PRESENTATION: A 79-year-old man developed chronic hip pain associated with a soft-tissue mass, fluid collection and sinus adjacent to his eight-year-old hip prosthesis. His symptoms started after intravesical Bacillus Calmette-Guerin (BCG) therapy for bladder cancer. Synovasure™ and 16S polymerase chain reaction (PCR) tests were negative, but culture of the periarticular mass and genome sequencing diagnosed BCG infection. He underwent a two-stage joint revision and a prolonged duration of antibiotic therapy which was curative. CONCLUSIONS: BCG PJI after therapeutic exposure can have serious consequences, and awareness of this potential complication, identified from patient history, is essential. In addition, requesting appropriate testing is required, together with recognition that traditional diagnostics may be negative in non-pyogenic PJI. Advanced molecular techniques have a role to enhance the timely management of these infections.
Assuntos
Artrite Infecciosa/etiologia , Vacina BCG/efeitos adversos , Infecções Relacionadas à Prótese/etiologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Administração Intravesical , Idoso , Artrite Infecciosa/diagnóstico , Artrite Infecciosa/terapia , Vacina BCG/administração & dosagem , Vacina BCG/genética , Vacina BCG/isolamento & purificação , Genoma Bacteriano/genética , Prótese de Quadril/efeitos adversos , Prótese de Quadril/microbiologia , Humanos , Masculino , Infecções Relacionadas à Prótese/diagnóstico , Infecções Relacionadas à Prótese/terapia , Resultado do TratamentoRESUMO
Suppressor of cytokine signaling 1 (SOCS1) plays a key role in the negative regulation of JAK/STAT signaling, which is involved in innate immunity and subsequent adaptive immunity. Bacillus Calmette-Guérin (BCG) induces upregulation of SOCS1 expression in host cells, which may lead to the suppression of immune responses by BCG via inhibition of the JAK/STAT signaling pathway. This might cause A reduction in the protective effect of a BCG vaccine. In the current study, we assessed the immune responses to and the protective efficacy of a recombinant BCG secreting a dominant negative mutant of the SOCS1 molecule (rBCG-SOCS1DN). C57BL/6 mice were immunized with rBCG-SOCS1DN or parental BCG Tokyo vaccine strain harboring an empty plasmid vector (rBCG-pSO). rBCG-SOCS1DN enhanced the activation of bone marrow-derived dendritic cells and the activation of T cells compared with those with rBCG-pSO. The amounts of IFN-γ, TNF-α, and IL-6 produced by splenocytes of rBCG-SOCS1DN-immunized mice were larger than those produced by splenocytes of rBCG-pSO-immunized mice. Moreover, the rBCG-SOCS1DN-immunized mice showed a substantial reduction in the number of CFU of Mycobacterium tuberculosis in the lungs and spleens compared with that in control BCG-immunized mice when the immunized mice were infected with a highly pathogenic M. tuberculosis strain by inhalation. These findings provide evidence for the possibility of rBCG-SOCS1DN being an effective M. tuberculosis vaccine with a novel concept of rBCG as a tool for immunomodulation in host cells.
Assuntos
Vacina BCG/imunologia , Células Dendríticas/imunologia , Mutação/genética , Mycobacterium tuberculosis/fisiologia , Proteína 1 Supressora da Sinalização de Citocina/genética , Linfócitos T/imunologia , Tuberculose/imunologia , Animais , Vacina BCG/genética , Contagem de Colônia Microbiana , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imunização , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/antagonistas & inibidores , Tuberculose/prevenção & controle , Vacinas Sintéticas/genéticaRESUMO
Dilated cardiomyopathy (DCM) is a potentially lethal disorder characterized by progressive impairment of cardiac function. Chronic myocarditis has long been hypothesized to be one of the causes of DCM. However, owing to the lack of suitable animal models of chronic myocarditis, its pathophysiology remains unclear. Here, we report a novel mouse model of chronic myocarditis induced by recombinant bacille Calmette-Guérin (rBCG) expressing a CD4+ T-cell epitope of cardiac myosin heavy chain-α (rBCG-MyHCα). Mice immunized with rBCG-MyHCα developed chronic myocarditis, and echocardiography revealed dilation and impaired contraction of ventricles, similar to those observed in human DCM. In the heart, CD62L-CD4+ T cells were increased and produced significant amounts of IFN-γ and IL-17 in response to cardiac myosin. Adoptive transfer of CD62L-CD4+ T cells induced myocarditis in the recipient mice, which indicated that CD62L-CD4+ T cells were the effector cells in this model. rBCG-MyHCα-infected dendritic cells produced proinflammatory cytokines and induced MyHCα-specific T-cell proliferation and Th1 and Th17 polarization. This novel chronic myocarditis mouse model may allow the identification of the central pathophysiological and immunological processes involved in the progression to DCM.
Assuntos
Vacina BCG/imunologia , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Miocardite/imunologia , Miosinas Ventriculares/imunologia , Animais , Vacina BCG/genética , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Doença Crônica , Citocinas/imunologia , Citocinas/metabolismo , Ecocardiografia , Epitopos de Linfócito T/genética , Humanos , Interleucina-17/imunologia , Interleucina-17/metabolismo , Ativação Linfocitária , Masculino , Camundongos Endogâmicos BALB C , Miocardite/patologia , Miocardite/fisiopatologia , Proteínas Recombinantes/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Miosinas Ventriculares/genéticaRESUMO
The coronavirus disease 2019 (COVID-19) outbreak, caused by SARS-CoV-2, has rapidly expanded to a global pandemic. However, numbers of infected cases, deaths, and mortality rates related to COVID-19 vary from country to country. Although many studies were conducted, the reasons of these differences have not been clarified. In this study, we comprehensively investigated 12,343 SARS-CoV-2 genome sequences isolated from patients/individuals in six geographic areas and identified a total of 1234 mutations by comparing with the reference SARS-CoV-2 sequence. Through a hierarchical clustering based on the mutant frequencies, we classified the 28 countries into three clusters showing different fatality rates of COVID-19. In correlation analyses, we identified that ORF1ab 4715L and S protein 614G variants, which are in a strong linkage disequilibrium, showed significant positive correlations with fatality rates (r = 0.41, P = 0.029 and r = 0.43, P = 0.022, respectively). We found that BCG-vaccination status significantly associated with the fatality rates as well as number of infected cases. In BCG-vaccinated countries, the frequency of the S 614G variant had a trend of association with the higher fatality rate. We also found that the frequency of several HLA alleles, including HLA-A*11:01, were significantly associated with the fatality rates, although these factors were associated with number of infected cases and not an independent factor to affect fatality rate in each country. Our findings suggest that SARS-CoV-2 mutations as well as BCG-vaccination status and a host genetic factor, HLA genotypes might affect the susceptibility to SARS-CoV-2 infection or severity of COVID-19.
Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/genética , Infecções por Coronavirus/mortalidade , Pneumonia Viral/genética , Pneumonia Viral/mortalidade , Fatores Etários , Vacina BCG/genética , Vacina BCG/uso terapêutico , Betacoronavirus/classificação , Betacoronavirus/imunologia , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Epitopos/genética , Genoma Viral , Saúde Global , Antígenos HLA-A/genética , Antígenos HLA-A/imunologia , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Humanos , Mutação , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genéticaRESUMO
BACKGROUND: Approximately 80% - 90% of individuals infected with latent Mycobacterium tuberculosis (Mtb) remain protected throughout their life-span. The release of unique, latent-phase antigens are known to have a protective role in the immune response against Mtb. Although the BCG vaccine has been administered for nine decades to provide immunity against Mtb, the number of TB cases continues to rise, thereby raising doubts on BCG vaccine efficacy. The shortcomings of BCG have been associated with inadequate processing and presentation of its antigens, an inability to optimally activate T cells against Mtb, and generation of regulatory T cells. Furthermore, BCG vaccination lacks the ability to eliminate latent Mtb infection. With these facts in mind, we selected six immunodominant CD4 and CD8 T cell epitopes of Mtb expressed during latent, acute, and chronic stages of infection and engineered a multi-epitope-based DNA vaccine (C6). RESULT: BALB/c mice vaccinated with the C6 construct along with a BCG vaccine exhibited an expansion of both CD4 and CD8 T cell memory populations and augmented IFN-γ and TNF-α cytokine release. Furthermore, enhancement of dendritic cell and macrophage activation was noted. Consequently, illustrating the elicitation of immunity that helps in the protection against Mtb infection; which was evident by a significant reduction in the Mtb burden in the lungs and spleen of C6 + BCG administered animals. CONCLUSION: Overall, the results suggest that a C6 + BCG vaccination approach may serve as an effective vaccination strategy in future attempts to control TB.
Assuntos
Vacina BCG/imunologia , Epitopos de Linfócito T , Tuberculose/prevenção & controle , Vacinas de DNA/imunologia , Animais , Antígenos de Bactérias/imunologia , Vacina BCG/genética , Vacina BCG/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/genética , Feminino , Memória Imunológica , Interferon gama/metabolismo , Tuberculose Latente/prevenção & controle , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Vacinas de DNA/farmacologiaRESUMO
Bacillus Calmette Guerin (BCG) vaccines comprise a family of related strains. Whole genome sequencing has allowed the better characterisation of the differences between many of the BCG vaccines. As sequencing technologies improve, updating of publicly available sequence data becomes common practice. We hereby announce the draft genome of four commonly used BCG vaccines in Brazil, Argentina and Venezuela.
Assuntos
Vacina BCG/genética , Mapeamento Cromossômico , Mycobacterium bovis/genética , Argentina , Sequência de Bases , Brasil , Humanos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , VenezuelaRESUMO
Mycobacterium bovis bacillus Calmette-Guérin (BCG) is used as a vaccine to protect against disseminated tuberculosis (TB) and as a treatment for bladder cancer. We describe characteristics of US TB patients reported to the National Tuberculosis Surveillance System (NTSS) whose disease was attributed to BCG. We identified 118 BCG cases and 91,065 TB cases reported to NTSS during 2004-2015. Most patients with BCG were US-born (86%), older (median age 75 years), and non-Hispanic white (81%). Only 17% of BCG cases had pulmonary involvement, in contrast with 84% of TB cases. Epidemiologic features of BCG cases differed from TB cases. Clinicians can use clinical history to discern probable BCG cases from TB cases, enabling optimal clinical management. Public health agencies can use this information to quickly identify probable BCG cases to avoid inappropriately reporting BCG cases to NTSS or expending resources on unnecessary public health interventions.
Assuntos
Vacina BCG/efeitos adversos , Notificação de Doenças , Tuberculose/epidemiologia , Tuberculose/microbiologia , Vacina BCG/genética , Notificação de Doenças/estatística & dados numéricos , Feminino , Genótipo , História do Século XXI , Humanos , Masculino , Vigilância da População , Tuberculose/diagnóstico , Tuberculose/história , Estados Unidos/epidemiologiaRESUMO
PURPOSE: Although Mycobacterium bovis Bacillus Calmette-Guérin (BCG) is the most widely used bladder cancer immunotherapy, innate immune responses involving antimicrobial peptides (AMPs) cause BCG failure and unwanted side effects. Here, we generated genetically modified BCG strains with improved immunotherapeutic effects by adding genes that confer evasion of AMPs. MATERIALS AND METHODS: We constructed recombinant BCG (rBCG) strains expressing Streptococcal inhibitor of complement (Sic), which confers resistance to human α-defensin-1 and cathelicidin, and d-alanyl carrier protein ligase (dltA), which confers resistance to cationic AMPs. Sic and dltA were separately cloned into the pMV306 plasmid and introduced into BCG via electroporation. Then, the efficacy of the rBCGs was tested in a growth inhibition assay using two bladder cancer cell lines (5637, T24). RESULTS: We confirmed the presence of cDNA segments corresponding to the Sic and dltA genes in total mRNA of the rBCG strains containing Sic (rBCG-Sic) and dltA (rBCG-dltA), and these rBCGs showed higher survival against AMPs. The growth inhibitory effects of rBCGs on bladder cancer cells were significantly enhanced compared to those of the parent BCG, and THP-1 migration also increased. After 8â¯h of infection, the levels of internalization were higher in rBCG-infected bladder cancer cells than in BCG-infected cells, and cells infected with rBCGs showed increased release of antitumor cytokines, such as IL-6/12, TNF-α, and INF-γ, resulting in inhibition of bacterial killing and immune modulation via antimicrobial peptides. CONCLUSIONS: rBCG-Sic and rBCG-dltA can effectively evade BCG-stimulated AMPs, and may be significantly improved immunotherapeutic tools to treat bladder cancer.
Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Vacina BCG/genética , Vacinas Anticâncer/genética , Mycobacterium bovis/genética , Neoplasias da Bexiga Urinária/terapia , Vacina BCG/imunologia , Vacina BCG/farmacologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Linhagem Celular Tumoral , Humanos , Imunidade Inata , Imunoterapia/métodos , Mycobacterium bovis/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/farmacologiaRESUMO
The live tuberculosis vaccine Mycobacterium bovis BCG (Bacille Calmette-Guérin) comprises a number of genetically distinct substrains. In BCG-Prague, phoP of the PhoP-PhoR two-component system is a pseudogene due to a single insertion mutation. We hypothesized that this mutation partially accounts for the low immunogenicity of BCG-Prague observed in the 1970s. In this study, we showed that complementation with the M. bovis allele of phoP restored BCG-Prague's immunogenicity. Furthermore, we showed that overexpression of the M. bovis allele of phoP-phoR in BCG-Japan, a strain already containing a copy of phoP-phoR, further enhanced immunogenicity and protective efficacy. Vaccination of C57BL/6 mice with the recombinant strain rBCG-Japan/PhoPR induced higher levels of interferon-γ (IFN-γ) production by CD4+ T cells than that with the parental BCG. Guinea pigs vaccinated with rBCG-Japan/PhoPR were better protected against challenge with Mycobacterium tuberculosis than those immunized with the parental BCG, showing significantly longer survival time, reduced bacterial burdens, and less severe pathology. Taken together, our study has identified a genetic modification that could be generally applied to generate new recombinant BCG vaccines.
Assuntos
Vacina BCG/genética , Vacina BCG/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Tuberculose/prevenção & controle , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Vacina BCG/administração & dosagem , Modelos Animais de Doenças , Feminino , Expressão Gênica , Cobaias , Imunogenicidade da Vacina , Interferon gama/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos SCID , Taxa de Sobrevida , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/microbiologia , Vacinas contra a Tuberculose/genética , Vacinas contra a Tuberculose/imunologiaRESUMO
BACKGROUND: Although intravesical bacille Calmette-Guérin (BCG) therapy is accepted as an effective treatment for bladder cancer, serious complications may occur in rare cases. To date, only 4 cases have been reported in which the patient developed a combination of mycotic aortic aneurysm and BCG spondylitis. Accurate diagnosis of BCG spondylitis is important because it is an iatrogenic disease, and its treatment is different from usual tuberculous spondylitis. However, distinguishing BCG spondylitis from usual tuberculous spondylitis is very difficult and takes a long time. In this study, we were able to suspect BCG spondylitis at an early stage from the result of the interferon-gamma release assay (IGRA). CASE PRESENTATION: We encountered a case of BCG spondylitis with adjacent mycotic aortic aneurysm after intravesical BCG therapy in a 76-year-old man. We performed a 2-stage operation to obtain spine stabilization and replace the aneurysm with a synthetic graft. We started multidrug therapy with antituberculosis medication, excluding pyrazinamide, because the patient's history of BCG therapy, negative IGRA, and positive of tuberculosis-polymerase chain reaction (Tb-PCR) suggested that the pathogenic bacteria of the spondylitis was BCG. Eventually the bacterial strain was identified as BCG by PCR-based genomic deletion analysis. CONCLUSIONS: BCG infection should be considered in patients who have been treated with BCG therapy, even if the treatment was performed several months to several years previously. In the case of a patient with a history of BCG therapy, a positive Tb-PCR result and negative IGRA result probably suggest BCG infections, if the possibility of false-negative IGRA result can be excluded.
Assuntos
Aneurisma Infectado/etiologia , Aneurisma Aórtico/etiologia , Vacina BCG/efeitos adversos , Espondilite/etiologia , Administração Intravesical , Idoso , Aneurisma Infectado/cirurgia , Aneurisma Aórtico/cirurgia , Vacina BCG/genética , Humanos , Testes de Liberação de Interferon-gama , Masculino , Mycobacterium bovis/genética , Espondilite/microbiologia , Espondilite/cirurgia , Resultado do Tratamento , Neoplasias da Bexiga Urinária/tratamento farmacológicoRESUMO
The Bacille Calmette-Guérin (BCG) vaccine comprises a family of genetically different strains derived by the loss of genomic regions (RDs) and other mutations. In BCG Moreau, loss of RD16 inactivates rv3405c * , encoding a transcriptional repressor that negatively regulates the expression of Rv3406, an alkyl sulfatase. To evaluate the impact of this loss on the BCG and host cell viability and the cytokine profile, THP-1 cells were infected with BCG Moreau (harbouring the empty vector) and a complemented strain carrying a functional copy of rv3405c. Viability of the host cells and bacteria as well as the pattern of cytokine secretion were evaluated. Our results show that the viability of BCG Moreau is higher than that of the complemented strain in an axenic medium, suggesting a possible functional gain associated with the constitutive expression of Rv3406. Viability of the host cells did not vary significantly between recombinant strains, but differences in the profiles of the cytokine secretion (IL-1ß and IL-6) were observed. Our results suggest an example of a functional gain due to gene loss contributing to the elucidation of the impact of RD16 on the physiology of BCG Moreau.
Assuntos
Vacina BCG/farmacologia , Sobrevivência Celular/genética , Citocinas/efeitos dos fármacos , Mutação com Ganho de Função/genética , Macrófagos/microbiologia , Mycobacterium bovis/genética , Transcrição Gênica/genética , Vacina BCG/genética , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Mutação com Ganho de Função/efeitos dos fármacos , Humanos , Mycobacterium bovis/fisiologia , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/microbiologiaRESUMO
Recombinant Mycobacterium bovis BCG vaccines (rBCG) were first developed in the 1990s as a means of expressing antigens from multiple pathogens. This review examines the key structural factors of recombinant M. bovis that influence the expression of the heterologous antigens and the generation of genetic and functional stability in rBCG, which are crucial for inducing strong and lasting immune responses. The fundamental aim of this paper is to provide an overview of factors that affect the expression of recombinant proteins in BCG and the generation of the immune response against the target antigens, including mycobacterial promoters, location of foreign antigens, and stability of the vectors. The reporter systems that have been employed for evaluation of these molecular features in BCG are also reviewed here.
Assuntos
Adjuvantes Imunológicos/genética , Vacina BCG/genética , Mycobacterium bovis/imunologia , Tuberculose/prevenção & controle , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Genes Reporter , Vetores Genéticos/genética , Humanos , Mycobacterium bovis/genética , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologiaRESUMO
BACKGROUND: Bovine tuberculosis (TB) is a zoonotic disease caused by Mycobacterium bovis, responsible for causing major losses in livestock. A cost effective alternative to control the disease could be herd vaccination. The bacillus Calmette-Guérin (BCG) vaccine has a limited efficacy against bovine TB, but can improved by over-expression of protective antigens. The M. bovis antigen 85B demonstrates ability to induce protective immune response against bovine TB in animal models. However, current systems for the construction of recombinant BCG expressing multiple copies of the gene result in strains of low genetic stability that rapidly lose the plasmid in vivo. Employing antibiotic resistance as selective markers, these systems also compromise vaccine safety. We previously reported the construction of a stable BCG expression system using auxotrophic complementation as a selectable marker. OBJECTIVES: The fundamental aim of this study was to construct strains of M. bovis BCG Pasteur and the auxotrophic M. bovis BCG ΔleuD expressing Ag85B and determine their stability in vivo. METHODS: Employing the auxotrophic system, we constructed rBCG strains that expressed M. bovis Ag85B and compared their stability with a conventional BCG strain in mice. Stability was measured in terms of bacterial growth on the selective medium and retention of antigen expression. FINDINGS: The auxotrophic complementation system was highly stable after 18 weeks, even during in vivo growth, as the selective pressure and expression of antigen were maintained comparing to the conventional vector. MAIN CONCLUSION: The Ag85B continuous expression within the host may generate a stronger and long-lasting immune response compared to conventional systems.
Assuntos
Antígenos de Bactérias/imunologia , Vacina BCG/imunologia , Mycobacterium bovis/imunologia , Animais , Antígenos de Bactérias/metabolismo , Vacina BCG/genética , Escherichia coli/genética , Feminino , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium bovis/genética , Plasmídeos/genética , Plasmídeos/imunologiaRESUMO
BACKGROUND: The control of genome stability is relevant for the worldwide BCG vaccine preventing the acute forms of childhood tuberculosis. BCG sub-strains whole genome comparative analysis and revealing the triggers of sub-strains transition were the purpose of our investigation. RESULTS: Whole genome sequencing of three BCG Russia seed lots (1963, 1982, 2006 years) confirmed the stability of vaccine sub-strain genome. Comparative analysis of three Mycobacteruim bovis and nine M. bovis BCG genomes shown that differences between "early" and "late" sub-strains BCG genomes were associated with specific prophage profiles. Several prophages common to all BCG genomes included ORFs which were homologues to Caudovirales. Surprisingly very different prophage profiles characterized BCG Tice and BCG Montreal genomes. These prophages contained ORFs which were homologues to Herpesviruses. Phylogeny of strains cohort based on genome maps restriction analysis and whole genomes sequence data were in agreement with prophage profiles. Pair-wise alignment of unique BCG Tice and BCG Montreal prophage sequences and BCG Russia 368 genome demonstrated only similarity of fragmetary sequences that suggested the contribution of prophages in genome mosaic structure formation. CONCLUSIONS: Control of the extended sequences is important for genome with mosaic structure. Prophage search tools are effective instruments in this analysis.