Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(3): 101755, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35202656

RESUMO

For the preparation of glycoconjugate vaccines, polysaccharide antigens can usually be chemically modified to generate reactive functional groups (e.g., the formation of aldehyde groups by periodate oxidation of adjacent diols) for covalent coupling with proteins. In a recent issue of JBC, Duke et al. showed that an alternative agent, galactose oxidase (GOase) isolated from the fungus Fusarium sp. can generate aldehyde groups in a unique chemoenzymatic approach to prepare a conjugate vaccine against Streptococcus pneumoniae. These findings introduce a new strategy for the design and development of glycoconjugate vaccines.


Assuntos
Glicoconjugados , Polissacarídeos , Streptococcus pneumoniae , Vacinas Conjugadas , Aldeídos , Glicoconjugados/química , Polissacarídeos/química , Polissacarídeos Bacterianos , Vacinas Conjugadas/química
2.
Anal Chem ; 95(29): 10895-10902, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37433088

RESUMO

Conjugate vaccines have been demonstrated to be a promising strategy for immunotherapeutic intervention in substance use disorder, wherein a hapten structurally similar to the target drug is conjugated to an immunogenic carrier protein. The antibodies generated following immunization with these species can provide long-lasting protection against overdose through sequestration of the abused drug in the periphery, which mitigates its ability to cross the blood-brain barrier. However, these antibodies exhibit a high degree of heterogeneity in structure. The resultant variations in chemical and structural compositions have not yet been clearly linked to the stability that directly affects their in vivo functional performance. In this work, we describe a rapid mass-spectrometry-based analytical workflow capable of simultaneous and comprehensive interrogation of the carrier protein-dependent heterogeneity and stability of crude polyclonal antibodies in response to conjugate vaccines. Quantitative collision-induced unfolding-ion mobility-mass spectrometry with an all-ion mode is adapted to rapidly assess the conformational heterogeneity and stability of crude serum antibodies collected from four different vaccine conditions, in an unprecedented manner. A series of bottom-up glycoproteomic experiments was performed to reveal the driving force underlying these observed heterogeneities. Overall, this study not only presents a generally applicable workflow for fast assessment of crude antibody conformational stability and heterogeneity at the intact protein level but also leverages carrier protein optimization as a simple solution to antibody quality control.


Assuntos
Anticorpos , Imunização , Haptenos , Vacinas Conjugadas/química , Proteínas de Transporte
3.
Chem Rev ; 121(7): 3598-3626, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33794090

RESUMO

The glycocalyx, a thick layer of carbohydrates, surrounds the cell wall of most bacterial and parasitic pathogens. Recognition of these unique glycans by the human immune system results in destruction of the invaders. To elicit a protective immune response, polysaccharides either isolated from the bacterial cell surface or conjugated with a carrier protein, for T-cell help, are administered. Conjugate vaccines based on isolated carbohydrates currently protect millions of people against Streptococcus pneumoniae, Haemophilus influenzae type b, and Neisseria meningitides infections. Active pharmaceutical ingredients (APIs) are increasingly discovered by medicinal chemistry and synthetic in origin, rather than isolated from natural sources. Converting vaccines from biologicals to pharmaceuticals requires a fundamental understanding of how the human immune system recognizes carbohydrates and could now be realized. To illustrate the chemistry-based approach to vaccine discovery, I summarize efforts focusing on synthetic glycan-based medicinal chemistry to understand the mammalian antiglycan immune response and define glycan epitopes for novel synthetic glycoconjugate vaccines against Streptococcus pneumoniae, Clostridium difficile, Klebsiella pneumoniae, and other bacteria. The chemical tools described here help us gain fundamental insights into how the human system recognizes carbohydrates and drive the discovery of carbohydrate vaccines.


Assuntos
Infecções Bacterianas/prevenção & controle , Glicocálix/química , Polissacarídeos/química , Vacinas Conjugadas/química , Vacinas Sintéticas/química , Animais , Clostridioides difficile , Glicoconjugados/química , Humanos , Klebsiella pneumoniae , Bibliotecas de Moléculas Pequenas/química , Streptococcus pneumoniae , Relação Estrutura-Atividade , Vacinas Conjugadas/farmacologia , Vacinas Sintéticas/farmacologia
4.
Biochemistry (Mosc) ; 88(9): 1248-1266, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37770392

RESUMO

Carrier proteins that provide an effective and long-term immune response to weak antigens has become a real breakthrough in the disease prevention, making it available to a wider range of patients and making it possible to obtain reliable vaccines against a variety of pathogens. Currently, research is continuing both to identify new peptides, proteins, and their complexes potentially suitable for use as carriers, and to develop new methods for isolation, purification, and conjugation of already known and well-established proteins. The use of recombinant proteins has a number of advantages over isolation from natural sources, such as simpler cultivation of the host organism, the possibility of modifying genetic constructs, use of numerous promoter variants, signal sequences, and other regulatory elements. This review is devoted to the methods of obtaining both traditional and new recombinant proteins and their derivatives already being used or potentially suitable for use as carrier proteins in conjugate vaccines.


Assuntos
Proteínas de Transporte , Humanos , Vacinas Conjugadas/química , Vacinas Conjugadas/genética , Proteínas Recombinantes/genética
5.
Glycoconj J ; 38(4): 437-446, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33852106

RESUMO

Virus-Like Particles (VLPs) have been used as immunogenic molecules in numerous recombinant vaccines. VLPs can also serve as vaccine platform to exogenous antigens, usually peptides incorporated within the protein sequences which compose the VLPs or conjugated to them. We herein described the conjugation of a synthetic tetrasaccharide mimicking the Streptococcus pneumoniae serotype 14 capsular polysaccharide to recombinant adenoviral type 3 dodecahedron, formed by the self-assembling of twelve penton bases and investigated the induced immune response when administered subcutaneously (s.c.). Whether formulated in the form of a dodecahedron or disassembled, the glycoconjugate induced an anti-protein response after two and three immunizations equivalent to that observed when the native dodecahedron was administered. On the other hand, the glycoconjugate induced a weak anti-IgM response which diminishes after two doses but no IgM-to-IgG switch was observed in mice against the serotype 14 capsular polysaccharide. In definitive, the whole conjugation process preserved both particulate nature and immunogenicity of the adenoviral dodecahedron. Further studies are needed to fully exploit adenoviral dodecahedron potential in terms of plasticity towards sequence engineering and of its capacity to stimulate the immune system via the intranasal route of administration as well as to shift the response to the carbohydrate antigen by playing both with the carbohydrate to protein ratio and the length of the synthetic carbohydrate antigen.


Assuntos
Adenoviridae , Glicoconjugados/química , Vacinas Pneumocócicas/química , Vacinas Pneumocócicas/imunologia , Modelos Moleculares , Conformação Proteica , Streptococcus pneumoniae , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia
6.
Pharm Res ; 38(1): 155-163, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33438097

RESUMO

PURPOSE: Sterile filtration can be a particular challenge when processing very large glycoconjugate vaccines. The objective of this study was to examine the sterile filtration performance of a series of glycoconjugate vaccines produced by coupling different polysaccharide serotypes to an immunogenic protein. METHODS: Sterile filtration was performed at constant filtrate flux using 0.22 µm pore size Durapore® polyvinylidene fluoride membranes. Glycoconjugates were characterized by dynamic light scattering, rheological measurements, and nanoparticle tracking analysis (NTA). Confocal microscopy was used to examine glycoconjugate capture profiles within the membrane. Transmembrane pressure data were analyzed using a recently developed fouling model. RESULTS: All glycoconjugates deposited in a narrow band near the entrance of the Durapore® membranes. The rate of fouling varied significantly for the different serotypes, with the fouling parameter correlated with the fraction of glycoconjugates larger than 200 nm in size. CONCLUSIONS: The fouling behavior and sterile filter capacity of the different glycoconjugate serotypes are determined primarily by the presence of large species (>200 nm in size) as determined by nanoparticle tracking analysis. The modified intermediate pore blockage model provides a framework for predicting the sterile filtration performance for these glycoconjugate vaccines.


Assuntos
Composição de Medicamentos/normas , Contaminação de Medicamentos/prevenção & controle , Glicoconjugados/normas , Vacinas Conjugadas/normas , Composição de Medicamentos/instrumentação , Composição de Medicamentos/métodos , Filtração/instrumentação , Filtração/normas , Glicoconjugados/química , Membranas Artificiais , Filtros Microporos , Tamanho da Partícula , Vacinas Conjugadas/química
7.
Biologicals ; 70: 53-58, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33518432

RESUMO

Potency of meningococcal polysaccharide-protein conjugate vaccines relies on the polysaccharide content to prevent meningitis. NIBSC, as the official national control laboratory in UK, analysed ten different mono- and multi-meningococcal conjugate vaccines, using established International Standards for meningococcal serogroups A, C, W, Y and X, by resorcinol or HPAEC-PAD assay. Most saccharide contents were within ±20% of their claimed content for licensure with taking different O-acetylation levels into consideration, with only MenC content in two vaccines below (by 60% and 54%) the labelled value, however, previous study showed different dosage was not necessarily correlated to the immunogenicity of those vaccines. This study demonstrated the use of International Standards to quantify saccharide content in polysaccharide-based vaccines with different percentage of O-acetylation. These International Standards are suitable to serve as either quantitative standard or calibrator of in-house standards, with supplied stability data.


Assuntos
Vacinas Meningocócicas , Polissacarídeos Bacterianos/administração & dosagem , Anticorpos Antibacterianos , Imunogenicidade da Vacina , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/química , Vacinas Meningocócicas/normas , Polissacarídeos Bacterianos/normas , Sorogrupo , Potência de Vacina , Vacinas Conjugadas/química , Vacinas Conjugadas/normas , Organização Mundial da Saúde
8.
Angew Chem Int Ed Engl ; 60(45): 24179-24188, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34469031

RESUMO

Ganglioside GD2 is an attractive tumor-associated carbohydrate antigen for anti-cancer vaccine development. However, its low immunogenicity and the significant side effects observed with anti-GD2 antibodies present significant obstacles for vaccines. To overcome these, a new GD2 derivative bearing an N-acetamide (NHAc) at its non-reducing end neuraminic acid (9NHAc-GD2) has been designed to mimic the 9-O-acetylated-GD2 (9OAc-GD2), a GD2 based antigen with a restricted expression on tumor cells. 9NHAc-GD2 was synthesized efficiently via a chemoenzymatic method and subsequently conjugated with a powerful carrier bacteriophage Qß. Mouse immunization with the Qß-9NHAc-GD2 conjugate elicited strong and long-lasting IgG antibodies, which were highly selective toward 9NHAc-GD2 with little cross-recognition of GD2. Immunization of canines with Qß-9NHAc-GD2 showed the construct was immunogenic in canines with little adverse effects, paving the way for future clinical translation to humans.


Assuntos
Vacinas Anticâncer/química , Gangliosídeos/síntese química , Vacinas Conjugadas/química , Acetamidas/química , Acetamidas/imunologia , Acetilação , Animais , Vacinas Anticâncer/imunologia , Configuração de Carboidratos , Gangliosídeos/química , Gangliosídeos/imunologia , Hidrólise , Camundongos , Ácidos Neuramínicos/química , Ácidos Neuramínicos/imunologia , Desenvolvimento de Vacinas , Vacinas Conjugadas/imunologia
9.
Bioconjug Chem ; 31(9): 2231-2240, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32809806

RESUMO

Conjugate vaccines against encapsulated pathogens like Streptococcus pneumoniae face many challenges, including the existence of multiple serotypes with a diverse global distribution that constantly requires new formulations and higher coverage. Multivalency is usually achieved by combining capsular polysaccharide-protein conjugates from invasive serotypes, and for S. pneumoniae, this has evolved from 7- up to 20-valent vaccines. These glycoconjugate formulations often contain high concentrations of carrier proteins, which may negatively affect glycoconjugate immune response. This work broadens the scope of an efficient multicomponent strategy, leading to multivalent pneumococcal glycoconjugates assembled in a single synthetic operation. The bioconjugation method, based on the Ugi four-component reaction, enables the one-pot incorporation of two different polysaccharide antigens to a tetanus toxoid carrier, thus representing the fastest approach to achieve multivalency. The reported glycoconjugates incorporate three combinations of capsular polysaccharides 1, 6B, 14, and 18C from S. pneumoniae. The glycoconjugates were able to elicit functional specific antibodies against pneumococcal strains comparable to those shown by mixtures of the two monovalent glycoconjugates.


Assuntos
Glicoconjugados/química , Vacinas Pneumocócicas/química , Vacinas Conjugadas/química , Animais , Técnicas de Química Sintética , Glicoconjugados/síntese química , Glicoconjugados/imunologia , Glicoconjugados/uso terapêutico , Humanos , Camundongos , Modelos Moleculares , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/síntese química , Vacinas Pneumocócicas/imunologia , Vacinas Pneumocócicas/uso terapêutico , Coelhos , Streptococcus pneumoniae/imunologia , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/uso terapêutico
10.
Chemistry ; 26(31): 7018-7025, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32058627

RESUMO

Identification of glycan functional epitopes is of paramount importance for rational design of glycoconjugate vaccines. We recently mapped the structural epitope of the capsular polysaccharide from type III Group B Streptococcus (GBSIII), a major cause of invasive disease in newborns, by using a dimer fragment (composed of two pentasaccharide repeating units) obtained by depolymerization complexed with a protective mAb. Although reported data had suggested a highly complex epitope contained in a helical structure composed of more than four repeating units, we showed that such dimer conjugated to a carrier protein with a proper glycosylation degree elicited functional antibodies comparably to the full-length conjugated polysaccharide. Here, starting from the X-ray crystallographic structure of the polysaccharide fragment-mAb complex, we synthesized a hexasaccharide comprising exclusively the relevant positions involved in binding. Combining competitive surface plasmon resonance and saturation transfer difference NMR spectroscopy as well as in-silico modeling, we demonstrated that this synthetic glycan was recognized by the mAb similarly to the dimer. The hexasaccharide conjugated to CRM197 , a mutant of diphtheria toxin, elicited a robust functional immune response that was not inferior to the polysaccharide conjugate, indicating that it may suffice as a vaccine antigen. This is the first evidence of an X-ray crystallography-guided design of a synthetic carbohydrate-based conjugate vaccine.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Epitopos/química , Glicoconjugados/química , Polissacarídeos/imunologia , Streptococcus agalactiae/química , Streptococcus agalactiae/imunologia , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia , Humanos , Vacinas Sintéticas
11.
J Biomed Sci ; 27(1): 89, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831077

RESUMO

BACKGROUND: Salmonella enterica serotype Typhimurium is a nontyphoidal and common foodborne pathogen that causes serious threat to humans. There is no licensed vaccine to prevent the nontyphoid bacterial infection caused by S. Typhimurium. METHODS: To develop conjugate vaccines, the bacterial lipid-A free lipopolysaccharide (LFPS) is prepared as the immunogen and used to synthesize the LFPS-linker-protein conjugates 6a-9b. The designed bifunctional linkers 1-5 comprising either an o-phenylenediamine or amine moiety are specifically attached to the exposed 3-deoxy-D-manno-octulosonic acid (Kdo), an α-ketoacid saccharide of LFPS, via condensation reaction or decarboxylative amidation. In addition to bovine serum albumin and ovalbumin, the S. Typhimurium flagellin (FliC) is also used as a self-adjuvanting protein carrier. RESULTS: The synthesized conjugate vaccines are characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and fast performance liquid chromatography (FPLC), and their contents of polysaccharides and protein are determined by phenol-sulfuric acid assay and bicinchoninic acid assay, respectively. Enzyme-linked immunosorbent assay (ELISA) shows that immunization of mouse with the LFPS-linker-protein vaccines at a dosage of 2.5 µg is sufficient to elicit serum immunoglobulin G (IgG) specific to S. Typhimurium lipopolysaccharide (LPS). The straight-chain amide linkers in conjugates 7a-9b do not interfere with the desired immune response. Vaccines 7a and 7b derived from either unfractionated LFPS or the high-mass portion show equal efficacy in induction of IgG antibodies. The challenge experiments are performed by oral gavage of S. Typhimurium pathogen, and vaccine 7c having FliC as the self-adjuvanting protein carrier exhibits a high vaccine efficacy of 74% with 80% mice survival rate at day 28 post the pathogen challenge. CONCLUSIONS: This study demonstrates that lipid-A free lipopolysaccharide prepared from Gram-negative bacteria is an appropriate immunogen, in which the exposed Kdo is connected to bifunctional linkers to form conjugate vaccines. The decarboxylative amidation of Kdo is a novel and useful method to construct a relatively robust and low immunogenic straight-chain amide linkage. The vaccine efficacy is enhanced by using bacterial flagellin as the self-adjuvanting carrier protein.


Assuntos
Lipopolissacarídeos/química , Vacinas contra Salmonella/química , Vacinas Conjugadas/química , Animais , Lipídeo A , Camundongos , Camundongos Endogâmicos BALB C , Vacinas contra Salmonella/imunologia , Vacinas Conjugadas/imunologia
12.
J Biomed Sci ; 27(1): 9, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900143

RESUMO

Glycoconjugate vaccines based on bacterial capsular polysaccharides (CPS) have been extremely successful in preventing bacterial infections. The glycan antigens for the preparation of CPS based glycoconjugate vaccines are mainly obtained from bacterial fermentation, the quality and length of glycans are always inconsistent. Such kind of situation make the CMC of glycoconjugate vaccines are difficult to well control. Thanks to the advantage of synthetic methods for carbohydrates syntheses. The well controlled glycan antigens are more easily to obtain, and them are conjugated to carrier protein to from the so-call homogeneous fully synthetic glycoconjugate vaccines. Several fully glycoconjugate vaccines are in different phases of clinical trial for bacteria or cancers. The review will introduce the recent development of fully synthetic glycoconjugate vaccine.


Assuntos
Infecções Bacterianas/prevenção & controle , Carboidratos/uso terapêutico , Polissacarídeos/imunologia , Vacinas Sintéticas/imunologia , Antígenos/imunologia , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/imunologia , Infecções Bacterianas/imunologia , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/uso terapêutico , Carboidratos/química , Carboidratos/imunologia , Glicoconjugados/química , Glicoconjugados/imunologia , Glicoconjugados/uso terapêutico , Humanos , Polissacarídeos/química , Polissacarídeos/uso terapêutico , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/uso terapêutico , Vacinas Sintéticas/química , Vacinas Sintéticas/uso terapêutico
13.
Mediators Inflamm ; 2020: 9596129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714092

RESUMO

The encapsulated bacteria, as Streptococcus pneumonia, Haemophilus influenzae type b, and Neisseria meningitidis, cause serious morbidity and mortality worldwide. The capsular polysaccharide (PS), which could elicit a weak T cell-independent immune response, is a vital virulence determinant. One of the strategies to improve the PS-specific immunogenicity is to conjugate PS with a nontoxic carrier protein. Tetanus toxoid (TT) and CRM197 are the typical carrier proteins for the PS conjugate vaccines. TT is the inactivated tetanus toxin manipulated with formaldehyde, which suffers from the pollution from residual formaldehyde and the incomplete detoxification. CRM197 has the disadvantage of low-yield purification with the requirement of sophisticated culture conditions. Thus, a novel carrier protein without these disadvantages is highly required. The tetanus toxin native C-fragment (Hc) is safe, low-cost, and highly immunogenic with easy purification, which can act as a promising carrier protein. Pneumococcal serogroups 14 and 23F were major epidemic causes of pneumococcal infections. In the present study, the capsular PSs (PS14 and PS23F) were conjugated with Hc, TT, and CRM197, respectively. TT- and CRM197-based conjugates acted as controls for Hc-based conjugates (PS14-Hc and PS23F-Hc). The structural properties of Hc were not fundamentally changed after conjugated with PS. PS14-Hc and PS23F-Hc could potentiate sound PS-specific antibody levels comparable to the controls. Thus, Hc exhibited a practical carrier effect to help the pneumococcal conjugate vaccines perform good immunogenicities.


Assuntos
Vacinas Pneumocócicas/química , Vacinas Pneumocócicas/imunologia , Toxoide Tetânico/imunologia , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia , Formaldeído
14.
Pharmacol Rev ; 69(3): 298-315, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28634286

RESUMO

Substance use disorder, especially in relation to opioids such as heroin and fentanyl, is a significant public health issue and has intensified in recent years. As a result, substantial interest exists in developing therapeutics to counteract the effects of abused drugs. A promising universal strategy for antagonizing the pharmacology of virtually any drug involves the development of a conjugate vaccine, wherein a hapten structurally similar to the target drug is conjugated to an immunogenic carrier protein. When formulated with adjuvants and immunized, the immunoconjugate should elicit serum IgG antibodies with the ability to sequester the target drug to prevent its entry to the brain, thereby acting as an immunoantagonist. Despite the failures of first-generation conjugate vaccines against cocaine and nicotine in clinical trials, second-generation vaccines have shown dramatically improved performance in preclinical models, thus renewing the potential clinical utility of conjugate vaccines in curbing substance use disorder. This review explores the critical design elements of drug conjugate vaccines such as hapten structure, adjuvant formulation, bioconjugate chemistry, and carrier protein selection. Methods for evaluating these vaccines are discussed, and recent progress in vaccine development for each drug is summarized.


Assuntos
Drogas Ilícitas/imunologia , Transtornos Relacionados ao Uso de Substâncias/terapia , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia , Animais , Antagonismo de Drogas , Haptenos/química , Haptenos/imunologia , Humanos , Transtornos Relacionados ao Uso de Substâncias/imunologia , Vacinas Conjugadas/administração & dosagem
15.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202815

RESUMO

No commercial vaccine is yet available against Group A Streptococcus (GAS), major cause of pharyngitis and impetigo, with a high frequency of serious sequelae in low- and middle-income countries. Group A Carbohydrate (GAC), conjugated to an appropriate carrier protein, has been proposed as an attractive vaccine candidate. Here, we explored the possibility to use GAS Streptolysin O (SLO), SpyCEP and SpyAD protein antigens with dual role of antigen and carrier, to enhance the efficacy of the final vaccine and reduce its complexity. All protein antigens resulted good carrier for GAC, inducing similar anti-GAC IgG response to the more traditional CRM197 conjugate in mice. However, conjugation to the polysaccharide had a negative impact on the anti-protein responses, especially in terms of functionality as evaluated by an IL-8 cleavage assay for SpyCEP and a hemolysis assay for SLO. After selecting CRM197 as carrier, optimal conditions for its conjugation to GAC were identified through a Design of Experiment approach, improving process robustness and yield This work supports the development of a vaccine against GAS and shows how novel statistical tools and recent advancements in the field of conjugation can lead to improved design of glycoconjugate vaccines.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Glicoconjugados , Vacinas Estreptocócicas , Vacinas Conjugadas , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Feminino , Glicoconjugados/química , Glicoconjugados/imunologia , Camundongos , Vacinas Estreptocócicas/síntese química , Vacinas Estreptocócicas/química , Vacinas Estreptocócicas/imunologia , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia
16.
Glycobiology ; 29(9): 669-680, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31206156

RESUMO

Shigellosis remains a major cause of diarrheal disease in developing countries and causes substantial morbidity and mortality in children. Vaccination represents a promising preventive measure to fight the burden of the disease, but despite enormous efforts, an efficacious vaccine is not available to date. The use of an innovative biosynthetic Escherichia coli glycosylation system substantially simplifies the production of a multivalent conjugate vaccine to prevent shigellosis. This bioconjugation approach has been used to produce the Shigella dysenteriae type O1 conjugate that has been successfully tested in a phase I clinical study in humans. In this report, we describe a similar approach for the production of an additional serotype required for a broadly protective shigellosis vaccine candidate. The Shigella flexneri 2a O-polysaccharide is conjugated to introduced asparagine residues of the carrier protein exotoxin A (EPA) from Pseudomonas aeruginosa by co-expression with the PglB oligosaccharyltransferase. The bioconjugate was purified, characterized using physicochemical methods and subjected to preclinical evaluation in rats. The bioconjugate elicited functional antibodies as shown by a bactericidal assay for S. flexneri 2a. This study confirms the applicability of bioconjugation for the S. flexneri 2a O-antigen, which provides an intrinsic advantage over chemical conjugates due to the simplicity of a single production step and ease of characterization of the homogenous monomeric conjugate formed. In addition, it shows that bioconjugates are able to raise functional antibodies against the polysaccharide antigen.


Assuntos
Imunogenicidade da Vacina/imunologia , Antígenos O/imunologia , Shigella flexneri/imunologia , Vacinas Conjugadas/imunologia , Animais , Feminino , Antígenos O/química , Ratos , Ratos Sprague-Dawley , Shigella flexneri/química , Shigella flexneri/crescimento & desenvolvimento , Vacinas Conjugadas/química
17.
Bioconjug Chem ; 30(1): 47-53, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30475601

RESUMO

Conjugate vaccines prepared with the cross-reactive material 197 (CRM197) carrier protein have been successful in the clinic and are of great interest in the field of immunotherapy. One route to preparing peptide-CRM197 conjugate vaccines involves an activation-conjugation strategy, effectively coupling lysine residues on the protein to cysteine thiolate groups on the peptide of interest using a heterobifunctional linker as an activation agent. This method has been found to result in two distinct populations of conjugates, believed to be the result of a conformational change of CRM197 during preparation. This report explores the factors that lead to this conformational change, pointing to a model in which the unintentional alkylation of histidine-21 by the activating agent promotes the "opening" of the monomeric protein. This exposes a new set of lysine residues that are modified by additional activation agents. Subsequent peptide ligation to these sites results in the two conformers. This is the first time that a specific chemical modification is demonstrated to induce a defined conformational change for this carrier protein. Importantly, alternative conditions and reagents have been found to minimize this effect, improving the conformational homogeneity of peptide-CRM197 conjugates.


Assuntos
Proteínas de Bactérias/química , Peptídeos/química , Vacinas Conjugadas/química , Conformação Proteica
18.
Bioconjug Chem ; 30(4): 1150-1161, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30865430

RESUMO

Simultaneous triggering of Toll-like receptors (TLRs) and NOD-like receptors (NLRs) has previously been shown to synergistically activate monocytes, dendritic cells, and macrophages. We applied these properties in a T-cell vaccine setting by conjugating the NOD2-ligand muramyl-dipeptide (MDP) and TLR2-ligand Pam3CSK4 to a synthetic peptide derived from a model antigen. Stimulation of human DCs with the MDP-peptide-Pam3CSK4 conjugate led to a strongly increased secretion of pro-inflammatory and Th1-type cytokines and chemokines. We further show that the conjugated ligands retain their ability to trigger their respective receptors, while even improving NOD2-triggering. Also, activation of murine DCs was enhanced by the dual triggering, ultimately leading to effective induction of vaccine-specific T cells expressing IFNγ, IL-2, and TNFα. Together, these data indicate that the dual MDP-SLP-Pam3CSK4 conjugate constitutes a chemically well-defined vaccine approach that holds promise for the use in the treatment of virus infections and cancer.


Assuntos
Células Dendríticas/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Peptídeos/imunologia , Receptor 2 Toll-Like/imunologia , Vacinas Conjugadas/imunologia , Animais , Citocinas/biossíntese , Células Dendríticas/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Monócitos/imunologia , Vacinas Conjugadas/química
19.
Bioconjug Chem ; 30(3): 561-567, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30768262

RESUMO

Cross-presentation, the process that facilitates display of exogenous antigens on MHC-I molecules, is a crucial step in the cascade of CD8 T cell activation. Potentiation of cross-presentation therefore represents an essential design criterion for development of subunit vaccines that target the induction of CD8 T cell immunity. Covalent conjugation of CpG-DNA to antigenic proteins has shown the potential to promote cross-presentation and has attracted great interest as a promising approach for vaccine development. However, heterogeneous product mixtures that result from typical conjugation schemes precluded identification of active conjugate species and impeded optimization of cross-presentation activity. In this report, we explore the effect of molecular composition of antigen-CpG conjugates on their cross-presentation activity using model Ovalbumin (OVA)-CpG conjugates. We developed a method to generate antigen-CpG conjugates with defined molecular compositions and leveraged this method to produce a series of OVA-CpG conjugates with one, two, and three CpG molecules linked to OVA. We observed that conjugates containing one CpG per OVA enhanced cross-presentation by 4-fold compared to native OVA, while conjugates with higher contents of CpG provided no cross-presentation enhancement. These differences are likely due to enhanced aggregation propensity observed for conjugates that carry more than one CpG per OVA. Our findings suggest that tuning molecular composition of antigen-CpG conjugates to maintain physical stability may be essential for achieving potent cross-presentation activity. Our method to generate defined conjugates could facilitate such molecular tuning and may be useful for continued development of antigen-CpG vaccines.


Assuntos
Antígenos/química , Ilhas de CpG , DNA/química , Ovalbumina/química , Vacinas Conjugadas/química , Animais , Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Apresentação Cruzada , DNA/imunologia , Camundongos , Ovalbumina/imunologia , Vacinas Conjugadas/imunologia
20.
Biotechnol Bioeng ; 116(3): 591-597, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30450582

RESUMO

Conjugated vaccines prepared from the capsular polysaccharide of Streptococcus pneumoniae can provide immunization against invasive pneumococcal disease, meningitis, and otitis media. One of the critical steps in the production of these vaccines is the removal of free (unreacted) polysaccharides from the protein-polysaccharide conjugate. Experimental studies were performed to evaluate the effects of membrane pore size, filtrate flux, and solution conditions on the transmission of both the conjugate and free polysaccharide through different ultrafiltration membranes. Conjugate purification was done using diafiltration performed in a linearly-scalable tangential flow filtration cassette. More than 98% of the free polysaccharide was removed within a 5-diavolume diafiltration process, which is a significant improvement over previously reported results for purification of similar conjugated vaccines. These results clearly demonstrate the opportunities for using ultrafiltration/diafiltration for the final purification of conjugated vaccine products.


Assuntos
Cápsulas Bacterianas/química , Vacinas Bacterianas/isolamento & purificação , Polissacarídeos Bacterianos/isolamento & purificação , Ultrafiltração/métodos , Vacinas Conjugadas/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Vacinas Bacterianas/química , Porosidade , Streptococcus pneumoniae/química , Vacinas Conjugadas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA