Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.406
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(32): 13166-13173, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39092810

RESUMO

For the approval of a drug, the stability data must be submitted to regulatory authorities. Such analyses are often time-consuming and cost-intensive. Forced degradation studies are mainly carried out under harsh conditions in the dissolved state, often leading to extraneous degradation profiles for a solid drug. Oxidative mechanochemical degradation offers the possibility of generating realistic degradation profiles. In this study, a sustainable mechanochemical procedure is presented for the degradation of five active pharmaceutical ingredients (APIs) from the sartan family: losartan potassium, irbesartan, valsartan, olmesartan medoxomil, and telmisartan. High-resolution mass spectrometry enabled the detection of impurities already present in untreated APIs and allowed the elucidation of degradation products. Significant degradation profiles could already be obtained after 15-60 min of ball milling time. Many of the identified degradation products are described in the literature and pharmacopoeias, emphasizing the significance of our results and the applicability of this approach to predict degradation profiles for drugs in the solid state.


Assuntos
Benzimidazóis , Compostos de Bifenilo , Losartan , Telmisartan , Tetrazóis , Valsartana , Benzimidazóis/química , Benzimidazóis/análise , Tetrazóis/química , Telmisartan/química , Valsartana/química , Losartan/química , Losartan/análise , Compostos de Bifenilo/química , Irbesartana/química , Irbesartana/análise , Imidazóis/química , Benzoatos/química , Valina/química , Valina/análise , Solventes/química , Estabilidade de Medicamentos
2.
Chembiochem ; 25(6): e202300762, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294275

RESUMO

Precise information regarding the interaction between proteins and ligands at molecular resolution is crucial for effectively guiding the optimization process from initial hits to lead compounds in early stages of drug development. In this study, we introduce a novel aliphatic side chain isotope-labeling scheme to directly probe interactions between ligands and aliphatic sidechains using NMR techniques. To demonstrate the applicability of this method, we selected a set of Brd4-BD1 binders and analyzed 1 H chemical shift perturbation resulting from CH-π interaction of Hß -Val and Hγ -Leu as CH donors with corresponding ligand aromatic moieties as π acceptors.


Assuntos
Proteínas Nucleares , Valina , Leucina/química , Valina/química , Ligantes , Fatores de Transcrição
3.
Fish Shellfish Immunol ; 149: 109615, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719095

RESUMO

Curcumin (Cur) exhibits diverse natural pharmacological activities, despite its limited water solubility (hydrophobicity) and low bioavailability. In this investigation, a valine-curcumin conjugate (Val-Cur) was synthesized through amino acid side chain modification, and its solubility increased to 1.78 mg/mL. In vitro experimental findings demonstrated that the antibacterial activity of Val-Cur against Escherichia coli, Staphylococcus aureus, Aeromonas hydrophila, and Vibrio parahaemolyticus was significantly superior to that of Cur. The inhibition rate of Val-Cur against HepG2 (human hepatocellular carcinoma) cells was higher than that of Cur at low concentrations (below 25 µmol/L), although the IC50 value of Val-Cur did not differ significantly from that of Cur. In vivo biological effects of Val-Cur were assessed by adding it into the feed (150 mg/kg) of American eels (Anguilla rostrata). Val-Cur significantly improved the growth performance (↑weight gain rate, ↑specific growth rate, and ↓feed conversion rate) and activities of intestinal digestive enzymes (amylase and lipase) and antioxidant enzymes (superoxide dismutase) in American eels. Additionally, Val-Cur significantly improved serum biochemical indices (↑high-density lipoprotein cholesterol, ↓low-density lipoprotein cholesterol, ↓aspartate and alanine aminotransferases). Furthermore, Val-Cur increased intestinal microbial diversity, reduced the abundance of potentially pathogenic bacteria (Spiroplasma, Clostridium, and Pseudomonas), and elevated the abundance of beneficial digestion-promoting bacteria (Romboutsia, Phyllobacterium, Romboutsia sedimentorum, and Clostridium butyricum) conducive to glucose metabolism (P < 0.05). To the best of our knowledge, this study is the first to explore water-soluble curcumin in aquaculture, and the findings will lay the groundwork for the potential application of water-soluble curcumin in the field of aquaculture.


Assuntos
Anguilla , Antibacterianos , Antineoplásicos , Curcumina , Animais , Curcumina/farmacologia , Curcumina/química , Curcumina/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Valina/farmacologia , Valina/química , Ração Animal/análise , Dieta/veterinária , Humanos , Suplementos Nutricionais/análise , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Células Hep G2 , Aeromonas hydrophila/fisiologia , Aeromonas hydrophila/efeitos dos fármacos
4.
Org Biomol Chem ; 22(31): 6409-6418, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-39069889

RESUMO

Pseudopeptides are emerging next-generation soft bioinspired materials for biological applications. Therefore, a new class of C2-symmetric L-valine-derived pseudopeptides has been designed and developed. The newly developed pseudopeptides exhibit intracellular Cu(II) ion detection in live-cell fluorescence studies on RAW264.7 cells. We find that the changes in the amino acid side chain in desired pseudopeptidic moieties lead to a drastic change in their selectivity towards different metal ions. The L-valine-derived pseudopeptides exhibit selectivity towards Cu(II) ions through turn-off fluorescence, and the L-phenylalanine-derived pseudopeptides exhibit selectivity towards Zn(II) ions through turn-on fluorescence. In addition, the L-valine-derived pseudopeptides show an increase in spherical-shaped structures upon incubation with Cu(II) ions during supramolecular nano-assembly formation. In contrast, the L-phenylalanine-derived pseudopeptides show a decrease in spherical-shaped structures upon adding Zn(II) ions. The judiciously designed L-valine-derived and L-phenylalanine-derived bioinspired pseudopeptides are promising for exploring similar effects in various peptidomimetics in advanced biological applications.


Assuntos
Cobre , Peptídeos , Cobre/química , Camundongos , Animais , Peptídeos/química , Peptídeos/síntese química , Nanoestruturas/química , Células RAW 264.7 , Fenilalanina/química , Valina/química
5.
Org Biomol Chem ; 21(46): 9216-9229, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37964666

RESUMO

Isotopic labeling of methyl-substituted proteinogenic amino acids with 13C has transformed applications of solution-based NMR spectroscopy and allowed the study of much larger and more complex proteins than previously possible with 15N labeling. Procedures are well-established for producing methyl-labeled proteins expressed in bacteria, with efficient incorporation of 13C-methyl labeled metabolic precursors to enable the isotopic labeling of Ile, Val, and Leu methyl groups. Recently, similar methodology has been applied to enable 13C-methyl labeling of Ile, Val, and Leu in yeast, extending the approach to proteins that do not readily fold when produced in bacteria. Mammalian or insect cells are nonetheless preferable for production of many human proteins, yet 13C-methyl labeling using similar metabolic precursors is not feasible as these cells lack the requisite biosynthetic machinery. Herein, we report versatile and high-yielding synthetic routes to 13C methyl-labeled amino acids based on palladium-catalyzed C(sp3)-H functionalization. We demonstrate the efficient incorporation of two of the synthesized amino acids, 13C-γ2-Ile and 13C-γ1,γ2-Val, into human receptor extracellular domains with multiple disulfides using suspension-cultured HEK293 cells. Production costs are reasonable, even at moderate expression levels of 2-3 mg purified protein per liter of medium, and the method can be extended to label other methyl groups, such as 13C-δ1-Ile and 13C-δ1,δ2-Leu. In summary, we demonstrate the cost-effective production of methyl-labeled proteins in mammalian cells by incorporation of 13C methyl-labeled amino acids generated de novo by a versatile synthetic route.


Assuntos
Aminoácidos , Valina , Animais , Humanos , Leucina/química , Valina/química , Células HEK293 , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Mamíferos/metabolismo
6.
Phys Chem Chem Phys ; 25(42): 28829-28834, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37853775

RESUMO

In this study, quantum chemical calculations were used to explore the synthesis of three chiral α-amino acids, specifically alanine, serine, and isovaline, from reactants found in interstellar space. Our focus is on the crucial step in the synthesis pathway that determines the chirality of the amino acids. The results indicate that in the case of alanine, the determination of enantiomer is primarily influenced by the direction of the collision of molecules or functional groups, which leads to the formation of a chirality center in a crucial intermediate. However, contrary to chemical expectations, the enantiodetermining/enantioselection step for serine and isovaline synthesis occurs prior to the creation of a chirality center.


Assuntos
Alanina , Serina , Aminoácidos/química , Valina/química , Estereoisomerismo
7.
J Biol Chem ; 296: 100284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33450226

RESUMO

ETV6 is an E26 transformation specific family transcriptional repressor that self-associates by its PNT domain to facilitate cooperative DNA binding. Chromosomal translocations frequently generate constitutively active oncoproteins with the ETV6 PNT domain fused to the kinase domain of one of many protein tyrosine kinases. Although an attractive target for therapeutic intervention, the propensity of the ETV6 PNT domain to polymerize via the tight head-to-tail association of two relatively flat interfaces makes it challenging to identify suitable small molecule inhibitors of this protein-protein interaction. Herein, we provide a comprehensive biophysical characterization of the ETV6 PNT domain interaction interfaces to aid future drug discovery efforts and help define the mechanisms by which its self-association mediates transcriptional repression. Using NMR spectroscopy, X-ray crystallography, and molecular dynamics simulations, along with amide hydrogen exchange measurements, we demonstrate that monomeric PNT domain variants adopt very stable helical bundle folds that do not change in conformation upon self-association into heterodimer models of the ETV6 polymer. Surface plasmon resonance-monitored alanine scanning mutagenesis studies identified hot spot regions within the self-association interfaces. These regions include both central hydrophobic residues and flanking salt-bridging residues. Collectively, these studies indicate that small molecules targeted to these hydrophobic or charged regions within the relatively rigid interfaces could potentially serve as orthosteric inhibitors of ETV6 PNT domain polymerization.


Assuntos
Alanina/química , Ácido Aspártico/química , Ácido Glutâmico/química , Proteínas Proto-Oncogênicas c-ets/química , Proteínas Repressoras/química , Transcrição Gênica , Valina/química , Alanina/metabolismo , Substituição de Aminoácidos , Ácido Aspártico/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Termodinâmica , Valina/metabolismo , Variante 6 da Proteína do Fator de Translocação ETS
8.
J Virol ; 95(16): e0061721, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34105996

RESUMO

The current pandemic of COVID-19 is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 spike protein receptor-binding domain (RBD) is the critical determinant of viral tropism and infectivity. To investigate whether naturally occurring RBD mutations during the early transmission phase have altered the receptor binding affinity and infectivity, we first analyzed in silico the binding dynamics between SARS-CoV-2 RBD mutants and the human angiotensin-converting enzyme 2 (ACE2) receptor. Among 32,123 genomes of SARS-CoV-2 isolates (December 2019 through March 2020), 302 nonsynonymous RBD mutants were identified and clustered into 96 mutant types. The six dominant mutations were analyzed applying molecular dynamics simulations (MDS). The mutant type V367F continuously circulating worldwide displayed higher binding affinity to human ACE2 due to the enhanced structural stabilization of the RBD beta-sheet scaffold. The MDS also indicated that it would be difficult for bat SARS-like CoV to infect humans. However, the pangolin CoV is potentially infectious to humans. The increased infectivity of V367 mutants was further validated by performing receptor-ligand binding enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance, and pseudotyped virus assays. Phylogenetic analysis of the genomes of V367F mutants showed that during the early transmission phase, most V367F mutants clustered more closely with the SARS-CoV-2 prototype strain than the dual-mutation variants (V367F+D614G), which may derivate from recombination. The analysis of critical RBD mutations provides further insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin under negative selection pressure and supports the continuing surveillance of spike mutations to aid in the development of new COVID-19 drugs and vaccines. IMPORTANCE A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused the pandemic of COVID-19. The origin of SARS-CoV-2 was associated with zoonotic infections. The spike protein receptor-binding domain (RBD) is identified as the critical determinant of viral tropism and infectivity. Thus, whether mutations in the RBD of the circulating SARS-CoV-2 isolates have altered the receptor binding affinity and made them more infectious has been the research hot spot. Given that SARS-CoV-2 is a novel coronavirus, the significance of our research is in identifying and validating the RBD mutant types emerging during the early transmission phase and increasing human angiotensin-converting enzyme 2 (ACE2) receptor binding affinity and infectivity. Our study provides insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin. The continuing surveillance of RBD mutations with increased human ACE2 affinity in human or other animals is critical to the development of new COVID-19 drugs and vaccines against these variants during the sustained COVID-19 pandemic.


Assuntos
Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , COVID-19/transmissão , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Cinética , Simulação de Dinâmica Molecular , Fenilalanina/química , Fenilalanina/metabolismo , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/classificação , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Termodinâmica , Valina/química , Valina/metabolismo , Virulência , Ligação Viral
9.
Plant Cell Environ ; 45(1): 262-272, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34661303

RESUMO

The phytohormone jasmonic acid (JA) plays a core role in plant defence against herbivores. When attacked by herbivores, JA and its bioactive derivatives are accumulated at the damage site, and subsequently perceived by the jasmonate co-receptors COI1 and JAZ proteins. The (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile) is known to be the main active JA derivative controlling vascular plant responses to herbivores as well as other JA-regulated processes. However, whether other endogenous JA-amino acid conjugates (JA-AAs) are involved in herbivore-induced defence responses remain unknown. Here, we investigated the role of herbivore-elicited JA-AAs in the crop plant rice. The levels of five JA-AAs were significantly increased under the armyworm, leaf folder and brown planthopper attack. Of the elicited JA derivatives, JA-Ile, JA-Val and JA-Leu could serve as ligands to promote the interaction between rice COI1 and JAZs, inducing OsJAZ4 degradation in vivo. JA-Val or JA-Leu treatment increased the expression of JA- and defence-related pathway genes but not JA-Ile levels, suggesting that these JA-AAs may directly function in JA signalling. Furthermore, the application of JA-Val or JA-Leu resulted in JA-mediated plant growth inhibition, while enhancing plant resistance to herbivore attack. This study uncovers that JA-Val and JA-Leu also play a role in rice defence against herbivores.


Assuntos
Ciclopentanos/metabolismo , Herbivoria , Oryza/fisiologia , Oxilipinas/metabolismo , Animais , Ciclopentanos/química , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Leucina/química , Mariposas , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oxilipinas/química , Oxilipinas/farmacologia , Plantas Geneticamente Modificadas , Valina/química
10.
Chem Res Toxicol ; 35(12): 2227-2240, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36395356

RESUMO

Analytical methods and tools for the characterization of the human exposome by untargeted mass spectrometry approaches are advancing rapidly. Adductomics methods have been developed for untargeted screening of short-lived electrophiles, in the form of adducts to proteins or DNA, in vivo. The identification of an adduct and its precursor electrophile in the blood is more complex than that of stable chemicals. The present work aims to illustrate procedures for the identification of an adduct to N-terminal valine in hemoglobin detected with adductomics, and pathways for the tracing of its precursor and possible exposure sources. Identification of the adduct proceeded via preparation and characterization of standards of adduct analytes. Possible precursor(s) and exposure sources were investigated by measurements in blood of adduct formation by precursors in vitro and adduct levels in vivo. The adduct was identified as hydroxypropanoic acid valine (HPA-Val) by verification with a synthesized reference. The HPA-Val was measured together with other adducts (from acrylamide, glycidamide, glycidol, and acrylic acid) in human blood (n = 51, schoolchildren). The HPA-Val levels ranged between 6 and 76 pmol/g hemoglobin. The analysis of reference samples from humans and rodents showed that the HPA-Val adduct was observed in all studied samples. No correlation of the HPA-Val level with the other studied adducts was observed in humans, nor was an increase in tobacco smokers observed. A small increase was observed in rodents exposed to glycidol. The formation of the HPA-Val adduct upon incubation of blood with glycidic acid (an epoxide) was shown. The relatively high adduct levels observed in vivo in relation to the measured reactivity of the epoxide, and the fact that the epoxide is not described as naturally occurring, suggest that glycidic acid is not the only precursor of the HPA-Val adduct identified in vivo. Another endogenous electrophile is suspected to contribute to the in vivo HPA-Val adduct level.


Assuntos
Compostos de Epóxi , Hemoglobinas , Criança , Humanos , Hemoglobinas/química , Valina/química , Ácido Láctico/análogos & derivados , Ácido Láctico/química , Animais , Ratos
11.
Org Biomol Chem ; 20(12): 2424-2432, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35262139

RESUMO

Efficient syntheses of fluorinated leucines, valines and alanines are described. The synthetic routes provide expedient access to various 13C/15N/D isotopologues requiring solely readily available and inexpensive isotope containing reagents such as NaBD4, carbon-13C dioxide and sodium azide-1-15N. The lightly fluorinated leucines and valines were found to be good substrates for cell-free protein expression and even 3-fluoroalanine, which is highly toxic to bacteria in vivo, could be incorporated into proteins this way. 19F-NMR spectra of the protein GB1 produced with these amino acids showed large chemical shift dispersions. Particularly high incorporation yields and clean 19F-NMR spectra were obtained for GB1 produced with valine residues, which had been synthesized with a single fluorine substituting a hydrogen stereospecifically in one of the methyl groups.


Assuntos
Alanina , Valina , Flúor/química , Leucina/química , Espectroscopia de Ressonância Magnética , Proteínas/química , Valina/química
12.
Biochemistry ; 60(36): 2704-2714, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34463474

RESUMO

In synthetic peptides containing Gly and coded α-amino acids, one of the most common practices to enhance their helical extent is to incorporate a large number of l-Ala residues along with noncoded, strongly foldameric α-aminoisobutyric acid (Aib) units. Earlier studies have established that Aib-based peptides, with propensity for both the 310- and α-helices, have a tendency to form ordered three-dimensional structure that is much stronger than that exhibited by their l-Ala rich counterparts. However, the achiral nature of Aib induces an inherent, equal preference for the right- and left-handed helical conformations as found in Aib homopeptide stretches. This property poses challenges in the analysis of a model peptide helical conformation based on chirospectroscopic techniques like electronic circular dichroism (ECD), a very important tool for assigning secondary structures. To overcome such ambiguity, we have synthesized and investigated a thermally stable 14-mer peptide in which each of the Aib residues of our previously designed and reported analogue ABGY (where B stands for Aib) is replaced by Cα-methyl-l-valine (L-AMV). Analysis of the results described here from complementary ECD and 1H nuclear magnetic resonance spectroscopic techniques in a variety of environments firmly establishes that the L-AMV-containing peptide exhibits a significantly stronger preference compared to that of its Aib parent in terms of conferring α-helical character. Furthermore, being a chiral α-amino acid, L-AMV shows an intrinsic, extremely strong bias for a quite specific (right-handed) screw sense. These findings emphasize the relevance of L-AMV as a more appropriate unit for the design of right-handed α-helical peptide models that may be utilized as conformationally constrained scaffolds.


Assuntos
Aminoácidos/química , Ácidos Aminoisobutíricos/química , Peptídeos/química , Valina/química , Dicroísmo Circular/métodos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Estrutura Secundária de Proteína
13.
Biochemistry ; 60(39): 2925-2931, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34506130

RESUMO

Rupintrivir targets the 3C cysteine proteases of the picornaviridae family, which includes rhinoviruses and enteroviruses that cause a range of human diseases. Despite being a pan-3C protease inhibitor, rupintrivir activity is extremely weak against the homologous 3C-like protease of SARS-CoV-2. In this study, the crystal structures of rupintrivir were determined bound to enterovirus 68 (EV68) 3C protease and the 3C-like main protease (Mpro) from SARS-CoV-2. While the EV68 3C protease-rupintrivir structure was similar to previously determined complexes with other picornavirus 3C proteases, rupintrivir bound in a unique conformation to the active site of SARS-CoV-2 Mpro splitting the catalytic cysteine and histidine residues. This bifurcation of the catalytic dyad may provide a novel approach for inhibiting cysteine proteases.


Assuntos
Antivirais/metabolismo , Proteases 3C de Coronavírus/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Isoxazóis/metabolismo , Fenilalanina/análogos & derivados , Pirrolidinonas/metabolismo , SARS-CoV-2/enzimologia , Valina/análogos & derivados , Antivirais/química , Domínio Catalítico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/química , Enterovirus Humano D/enzimologia , Ligação de Hidrogênio , Isoxazóis/química , Fenilalanina/química , Fenilalanina/metabolismo , Ligação Proteica , Pirrolidinonas/química , Eletricidade Estática , Valina/química , Valina/metabolismo
14.
J Biomol NMR ; 75(6-7): 221-232, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34041691

RESUMO

Methyl moieties are highly valuable probes for quantitative NMR studies of large proteins. Hence, their assignment is of the utmost interest to obtain information on both interactions and dynamics of proteins in solution. Here, we present the synthesis of a new precursor that allows connection of leucine and valine pro-S methyl moieties to backbone atoms by linear 13C-chains. This optimized 2H/13C-labelled acetolactate precursor can be combined with existing 13C/2H-alanine and isoleucine precursors in order to directly transfer backbone assignment to the corresponding methyl groups. Using this simple approach leucine and valine pro-S methyl groups can be assigned using a single sample without requiring correction of 1H/2H isotopic shifts on 13C resonances. The approach was demonstrated on the N-terminal domain of human HSP90, for which complete assignment of Ala-ß, Ile-δ1, Leu-δ2, Met-ε, Thr-γ and Val-γ2 methyl groups was obtained.


Assuntos
Proteínas de Choque Térmico HSP90/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Leucina/química , Domínios Proteicos , Valina/química
15.
Biochem Biophys Res Commun ; 543: 15-22, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33503542

RESUMO

Oncogenic transformation enables cells to behave differently from their neighboring normal cells. Both cancer and normal cells recognize each other, often promoting the extrusion of the former from the epithelial cell layer. Here, we show that RasV12-transformed normal rat kidney 52E (NRK-52E) cells are extruded towards the basal side of the surrounding normal cells, which is concomitant with enhanced motility. The active migration of the basally extruded RasV12 cells is observed when surrounded by normal cells, indicating a non-cell-autonomous mechanism. Furthermore, specific inhibitor treatment and knockdown experiments elucidate the roles of PI3K and myosin IIA in the basal extrusion of Ras cells. Our findings reveal a new aspect of cancer cell invasion mediated by functional interactions with surrounding non-transformed cells.


Assuntos
Mutação , Neoplasias/patologia , Miosina não Muscular Tipo IIA/metabolismo , Proteína Oncogênica p21(ras)/genética , Fosfatidilinositol 3-Quinases/metabolismo , Valina/química , Sequência de Aminoácidos , Animais , Movimento Celular/fisiologia , Células Cultivadas , Cães , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Ratos , Transdução de Sinais , Valina/genética
16.
Amino Acids ; 53(3): 323-331, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33586040

RESUMO

Isopedopeptins are antibiotic cyclic lipodepsipeptides containing the subsequence L-Thr-L-2,3-diaminopropanoic acid-D-Phe-L-Val/L-3-hydroxyvaline. Acidic hydrolysis of isopedopeptins in D2O showed the D-Phe residues to racemize extensively in peptides with L-3-hydroxyvaline but not in peptides with L-Val. Similarly, one Leu residue in pedopeptins, which are related peptides containing the subsequence Leu-2,3-diaminopropanoic acid-Leu-L-Val/L-3-hydroxyvaline, was found to racemize in peptides with L-3-hydroxyvaline. Model tetrapeptides, L-Ala-L-Phe-L-Val/3-hydroxyvaline-L-Ala, gave the corresponding results, i.e. racemization of L-Phe only when linked to a L-3-hydroxyvaline. We propose the racemization to proceed via an oxazoline intermediate involving Phe/Leu and the L-3-hydroxyvaline residues. The 3-hydroxyvaline residue may form a stable tertiary carbocation by loss of the sidechain hydroxyl group as water after protonation. Elimination of the Phe/Leu H-2 and ring-closure from the carbonyl oxygen onto the carbocation results in the suggested oxazoline intermediate. The reversed reaction leads to either retained or inversed configuration of Phe/Leu. Such racemization during acidic hydrolysis may occur whenever a 3-hydroxyvaline residue or any amino acid that can form a stable carbocation on the C-3, is present in a peptide. The proposed mechanism for racemization was supported by incorporation of 18O in the 3-hydroxyvaline sidechain when the acidic hydrolysis was performed in H2O/H218O (1:1). The 2,3-diaminopropanoic residues of isopedopeptins and pedopeptins were also found to racemize during acidic hydrolysis, as previously described. Based on the results, the configuration of the Leu and 2,3-diaminopropanoic acid residues of the pedopeptins were reassigned to be L-Leu and D-Leu, and 2 × L-2,3-diaminopropanoic acid.


Assuntos
Aminoácidos/química , Oxazóis/química , Peptídeos/química , Dipeptídeos/química , Hidrólise , Isomerismo , Peptídeos Cíclicos/química , Valina/química
17.
J Sep Sci ; 44(19): 3691-3699, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34347375

RESUMO

Two valine carbamate prodrugs of daidzein were designed to improve its bioavailability. To compare the pharmacokinetic behavior of these prodrugs with different protected phenolic hydroxyl groups of daidzein, a rapid and sensitive method for simultaneous quantification of daidzein, its valine carbamate prodrug, and daidzein-7-O-glucuronide in rat plasma was developed and validated in this study. The samples were processed using a fast one-step protein precipitation method with methanol added to 50 µL of plasma and were analyzed by ultra-high performance liquid chromatography with tandem mass spectrometry. To improve the selectivity, peak shape, and peak elution, several key factors, especially stationary phase and the composition of the mobile phase, were tested, and the analysis was performed using the Kinetex® C18 column (100 × 2.1 mm, 2.6 µm) within only 2.6 min under optimal conditions. The established method exhibited good linearity over the concentration range of 2.0-1000 ng/mL for daidzein, and 8.0-4000 ng/mL for the prodrug and daidzein-7-O-glucuronide. The accuracy of the quality control samples was between 95.5 and 110.2% with satisfactory intra- and interday precision (relative standard deviation values < 10.85%), respectively. This sensitive, rapid, low-cost, and high-throughput method was successfully applied to compare the pharmacokinetic behavior of different daidzein carbamate prodrugs.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Glucuronídeos/sangue , Isoflavonas/sangue , Pró-Fármacos/análise , Espectrometria de Massas em Tandem/métodos , Animais , Carbamatos/sangue , Carbamatos/química , Carbamatos/farmacocinética , Glucuronídeos/química , Glucuronídeos/farmacocinética , Isoflavonas/química , Isoflavonas/farmacocinética , Modelos Lineares , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Valina/sangue , Valina/química , Valina/farmacocinética
18.
Nucleic Acids Res ; 47(3): 1451-1467, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30496557

RESUMO

RNA processing by ribonucleases and RNA modifying enzymes often involves sequential reactions of the same enzyme on a single precursor transcript. In Escherichia coli, processing of polycistronic tRNA precursors involves separation into individual pre-tRNAs by one of several ribonucleases followed by 5' end maturation by ribonuclease P. A notable exception are valine and lysine tRNAs encoded by three polycistronic precursors that follow a recently discovered pathway involving initial 3' to 5' directional processing by RNase P. Here, we show that the dicistronic precursor containing tRNAvalV and tRNAvalW undergoes accurate and efficient 3' to 5' directional processing by RNase P in vitro. Kinetic analyses reveal a distributive mechanism involving dissociation of the enzyme between the two cleavage steps. Directional processing is maintained despite swapping or duplicating the two tRNAs consistent with inhibition of processing by 3' trailer sequences. Structure-function studies identify a stem-loop in 5' leader of tRNAvalV that inhibits RNase P cleavage and further enforces directional processing. The results demonstrate that directional processing is an intrinsic property of RNase P and show how RNA sequence and structure context can modulate reaction rates in order to direct precursors along specific pathways.


Assuntos
Processamento Pós-Transcricional do RNA/genética , RNA de Transferência/genética , Ribonuclease P/genética , Relação Estrutura-Atividade , Escherichia coli/química , Escherichia coli/genética , Lisina/química , Motivos de Ligação ao RNA/genética , Ribonuclease P/química , Especificidade por Substrato , Valina/química
19.
Biomed Chromatogr ; 35(9): e5146, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33893663

RESUMO

Hepatitis C virus (HCV) is an infectious disease that has become a global clinical issue because of its significant morbidity and mortality. Novel anti-hepatitis C drugs are continuously developed to decrease the pervasiveness of the infection globally. A synthetic ravidasvir, benzimidazole-naphthylene-imidazole derivatives, has been used as an anti-HCV drug. This study determined the metabolites of ravidasvir and its pharmacokinetics in rats using information-dependent acquisition and multiple reaction monitoring scanning modes in linear ion trap LC-MS/MS instrument, respectively. Two time-programming linear-gradient chromatographic methods were employed using a Kinetex C18 column (50 × 3 mm, 2.6 µm) and a Luna HILIC column (100 × 4.6 mm, 3 µm) for the qualitative and quantitative determination of ravidasvir and its metabolites, respectively. In silico prediction where sites in a molecule are susceptible to metabolism by cytochrome P450 was implemented, which helped in proposing the metabolic pathway of ravidasvir. The most dominant metabolite in rat liver microsomal samples was oxidative ravidasvir, where one O-demethylated metabolite and eight isomers of the oxidative ravidasvir metabolites were identified. The study provides essential data for proposing the metabolic pathway and successfully applied it to determine the pharmacokinetics of ravidasvir in rat plasma.


Assuntos
Benzimidazóis , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Valina/análogos & derivados , Animais , Benzimidazóis/análise , Benzimidazóis/química , Benzimidazóis/metabolismo , Benzimidazóis/farmacocinética , Modelos Lineares , Masculino , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Valina/análise , Valina/química , Valina/metabolismo , Valina/farmacocinética
20.
Biomed Chromatogr ; 35(8): e5119, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33749889

RESUMO

A valine carbamate prodrug of naringenin (NAR) called 4'V was synthesized to enhance its oral bioavailability because of low water solubility and poor membrane permeability of NAR. This study developed and fully validated a sensitive, rapid, and robust HPLC-MS/MS method for the simultaneous determination of NAR and 4'V in plasma. The analytes were treated using liquid-liquid extraction, separated on a Phenomenex Kinetex XB-C18 column, and detected using a triple-quadrupole tandem mass spectrometer equipped with an electrospray ionization interface. The analytes were eluted within only 4 min by gradient procedure. The excellent linear correlations were validated over the range of 4-400 ng/mL (r = 0.9990) for NAR and 2-2000 ng/mL (r = 0.9951) for 4'V, with lower limits of quantification of 4 and 2 ng/mL, respectively. For all quality control samples, the intra-day and inter-day precision and accuracy were within ±15%. The validated method was economical, high throughput, and reliable and was first successfully applied to a pharmacokinetic study of NAR and 4'V after oral administration to Sprague-Dawley rats. The results of the pharmacokinetic study demonstrated that the idea of amino acid carbamate prodrug is a promising strategy to improve the bioavailability of NAR.


Assuntos
Carbamatos/sangue , Cromatografia Líquida de Alta Pressão/métodos , Flavanonas/sangue , Espectrometria de Massas em Tandem/métodos , Valina/sangue , Animais , Disponibilidade Biológica , Carbamatos/química , Carbamatos/farmacocinética , Flavanonas/química , Flavanonas/farmacocinética , Modelos Lineares , Masculino , Pró-Fármacos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Valina/química , Valina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA