Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 629
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710921

RESUMO

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Assuntos
Administração Intranasal , Encéfalo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Glicerídeos , Mucosa Nasal , Tamanho da Partícula , Verapamil , Administração Intranasal/métodos , Animais , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Verapamil/administração & dosagem , Verapamil/farmacocinética , Distribuição Tecidual , Glicerídeos/química , Mucosa Nasal/metabolismo , Disponibilidade Biológica , Ratos , Bloqueadores dos Canais de Cálcio/farmacocinética , Bloqueadores dos Canais de Cálcio/administração & dosagem , Poloxâmero/química , Masculino , Química Farmacêutica/métodos , Ratos Wistar , Nanopartículas/química
2.
Bioorg Med Chem ; 56: 116588, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030421

RESUMO

Membrane permeability plays an important role in oral drug absorption. Caco-2 and Madin-Darby Canine Kidney (MDCK) cell culture systems have been widely used for assessing intestinal permeability. Since most drugs are absorbed passively, Parallel Artificial Membrane Permeability Assay (PAMPA) has gained popularity as a low-cost and high-throughput method in early drug discovery when compared to high-cost, labor intensive cell-based assays. At the National Center for Advancing Translational Sciences (NCATS), PAMPA pH 5 is employed as one of the Tier I absorption, distribution, metabolism, and elimination (ADME) assays. In this study, we have developed a quantitative structure activity relationship (QSAR) model using our ∼6500 compound PAMPA pH 5 permeability dataset. Along with ensemble decision tree-based methods such as Random Forest and eXtreme Gradient Boosting, we employed deep neural network and a graph convolutional neural network to model PAMPA pH 5 permeability. The classification models trained on a balanced training set provided accuracies ranging from 71% to 78% on the external set. Of the four classifiers, the graph convolutional neural network that directly operates on molecular graphs offered the best classification performance. Additionally, an ∼85% correlation was obtained between PAMPA pH 5 permeability and in vivo oral bioavailability in mice and rats. These results suggest that data from this assay (experimental or predicted) can be used to rank-order compounds for preclinical in vivo testing with a high degree of confidence, reducing cost and attrition as well as accelerating the drug discovery process. Additionally, experimental data for 486 compounds (PubChem AID: 1645871) and the best models have been made publicly available (https://opendata.ncats.nih.gov/adme/).


Assuntos
Betametasona/farmacocinética , Dexametasona/farmacocinética , Ranitidina/farmacocinética , Verapamil/farmacocinética , Administração Oral , Animais , Betametasona/administração & dosagem , Disponibilidade Biológica , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Dexametasona/administração & dosagem , Cães , Relação Dose-Resposta a Droga , Humanos , Concentração de Íons de Hidrogênio , Células Madin Darby de Rim Canino , Camundongos , Estrutura Molecular , Redes Neurais de Computação , Ranitidina/administração & dosagem , Ratos , Relação Estrutura-Atividade , Verapamil/administração & dosagem
3.
Mol Pharm ; 18(1): 416-428, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33315404

RESUMO

(R)-[11C]verapamil is a radiotracer widely used for the evaluation of the P-glycoprotein (P-gp) function at the blood-brain barrier (BBB). Several studies have evaluated the pharmacokinetics of (R)-[11C]verapamil in rats and humans under different conditions. However, to the best of our knowledge, the pharmacokinetics of (R)-[11C]verapamil have not yet been evaluated in nonhuman primates. Our study aims to establish (R)-[11C]verapamil as a reference P-gp tracer for comparison of a newly developed P-gp positron emission tomography (PET) tracer in a species close to humans. Therefore, the study assesses the kinetics of (R)-[11C]verapamil and evaluates the effect of scan duration and P-gp inhibition on estimated pharmacokinetic parameters. Three nonhuman primates underwent two dynamic 91 min PET scans with arterial blood sampling, one at baseline and another after inhibition of the P-gp function. The (R)-[11C]verapamil data were analyzed using 1-tissue compartment model (1-TCM) and 2-tissue compartment model fits using plasma-corrected for polar radio-metabolites or non-corrected for radio-metabolites as an input function and with various scan durations (10, 20, 30, 60, and 91 min). The preferred model was chosen according to the Akaike information criterion and the standard errors (SE %) of the estimated parameters. 1-TCM was selected as the model of choice to analyze the (R)-[11C]verapamil data at baseline and after inhibition and for all scan durations tested. The volume of distribution (VT) and the efflux constant k2 estimations were affected by the evaluated scan durations, whereas the influx constant K1 estimations remained relatively constant. After P-gp inhibition (tariquidar, 8 mg/kg), in a 91 min scan duration, the whole-brain VT increased significantly up to 208% (p < 0.001) and K1 up to 159% (p < 0.001) compared with baseline scans. The k2 values decreased significantly after P-gp inhibition in all the scan durations except for the 91 min scans. This study suggests the use of K1, calculated with 1-TCM and using short PET scans (10 to 30 min), as a suitable parameter to measure the P-gp function at the BBB of nonhuman primates.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Radioisótopos de Carbono/metabolismo , Primatas/metabolismo , Verapamil/farmacocinética , Algoritmos , Animais , Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Cinética , Macaca mulatta , Masculino , Tomografia por Emissão de Pósitrons/métodos , Quinolinas/farmacocinética , Cintilografia
4.
Biomed Chromatogr ; 35(2): e4976, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32852057

RESUMO

Multidrug resistance remains a huge challenge in the chemotherapy of cancer and numerous studies have reported that P-glycoprotein is the most common mechanism of multidrug resistance. Verapamil has been shown to be able to reverse development of multidrug resistance mediated by P-glycoprotein. However, the mechanism of action for verapamil in reversing multidrug resistance at the metabolic level has been rarely reported. In this research, we report the reversal effect of verapamil on multidrug resistance and its mechanisms of action using metabolomics. The results show that the P-glycoprotein-mediated chemotherapy drug resistance was significantly reversed by verapamil in resistant SW620/Ad300 cells. In-depth studies demonstrated that verapamil at reversal concentration had no effect on the P-glycoprotein expression level, but increased intramolecular accumulation of paclitaxel in SW620/Ad300 cells. Metabolomics revealed that the multidrug resistance of SW620/Ad300 cells was related to changes in glycerophospholipid metabolism, sphingolipid metabolism and citric acid cycle, and verapamil could antagonize the multidrug resistance by reversing the above-mentioned glycerophospholipid metabolism and sphingolipid metabolism. This research shows the multidrug resistance reversal mechanism of verapamil at the metabolic level, which helps in understanding the exact multidrug resistance mechanism of verapamil and might be potentially useful to find new multidrug resistance reversal agents. The combination of verapamil (VRP) and paclitaxel (PTX) yielded synergistic effects. VRP had no effect on the expression of P-gp, but increased intramolecular accumulation of PTX. VRP antagonized the MDR by regulating glycerophospholipid metabolism and sphingolipid metabolism.


Assuntos
Neoplasias Colorretais/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Verapamil/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Biomarcadores/análise , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Sinergismo Farmacológico , Humanos , Metabolômica/métodos , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Espectrometria de Massas em Tandem , Verapamil/farmacocinética
5.
J Vet Pharmacol Ther ; 44(1): 116-125, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32744755

RESUMO

Orosomucoid polymorphisms influence plasma drug binding in humans; however, canine variants and their effect on drug plasma protein binding have not yet been reported. In this study, the orosomucoid gene (ORM1) was sequenced in 100 dogs to identify the most common variant and its allele frequency determined in 1,464 dogs (from 64 breeds and mixed-breed dogs). Plasma protein binding extent of amitriptyline, indinavir, verapamil, and lidocaine were evaluated by equilibrium dialysis using plasma from ORM1 genotyped dogs (n = 12). Free and total drug plasma concentrations were quantified by liquid chromatography-mass spectrometry. From the five polymorphisms identified in canine ORM1, two were nonsynonymous. The most common was c.70G>A (p.Ala24Thr) with an allele frequency of 11.2% (n = 1464). Variant allele frequencies varied by breed, reaching 74% in Shetland Sheepdogs (n = 21). Free drug fractions did not differ significantly (p > .05; Mann-Whitney U) between plasma collected from dogs with c.70AA (n = 4) and those with c.70GG (n = 8) genotypes. While c.70G>A did not affect the extent of plasma protein binding in our study, the potential biological and pharmacological implication of this newly discovered ORM1 variant in dogs should be further investigated.


Assuntos
Proteínas Sanguíneas/metabolismo , Cães/genética , Genótipo , Orosomucoide/metabolismo , Polimorfismo Genético , Amitriptilina/farmacocinética , Anestésicos Locais/farmacocinética , Animais , Antiarrítmicos/farmacocinética , Antidepressivos Tricíclicos/farmacocinética , Cães/sangue , Cães/metabolismo , Regulação da Expressão Gênica/fisiologia , Inibidores da Protease de HIV/farmacocinética , Indinavir/farmacocinética , Lidocaína/farmacocinética , Orosomucoide/genética , Ligação Proteica , Verapamil/farmacocinética
6.
Molecules ; 26(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917412

RESUMO

A novel, fast and sensitive enantioselective HPLC assay with a new core-shell isopropyl carbamate cyclofructan 6 (superficially porous particle, SPP) chiral column (LarihcShell-P, LSP) was developed and validated for the enantiomeric separation and quantification of verapamil (VER) in rat plasma. The polar organic mobile phase composed of acetonitrile/methanol/trifluoroacetic acid/triethylamine (98:2:0.05: 0.025, v/v/v/v) and a flow rate of 0.5 mL/min was applied. Fluorescence detection set at excitation/emission wavelengths 280/313 nm was used and the whole analysis process was within 3.5 min, which is 10-fold lower than the previous reported HPLC methods in the literature. Propranolol was selected as the internal standard. The S-(-)- and R-(+)-VER enantiomers with the IS were extracted from rat plasma by utilizing Waters Oasis HLB C18 solid phase extraction cartridges without interference from endogenous compounds. The developed assay was validated following the US-FDA guidelines over the concentration range of 1-450 ng/mL (r2 ≥ 0.997) for each enantiomer (plasma) and the lower limit of quantification was 1 ng/mL for both isomers. The intra- and inter-day precisions were not more than 11.6% and the recoveries of S-(-)- and R-(+)-VER at all quality control levels ranged from 92.3% to 98.2%. The developed approach was successfully applied to the stereoselective pharmacokinetic study of VER enantiomers after oral administration of 10 mg/kg racemic VER to Wistar rats. It was found that S-(-)-VER established higher Cmax and area under the concentration-time curve (AUC) values than the R-(+)-enantiomer. The newly developed approach is the first chiral HPLC for the enantiomeric separation and quantification of verapamil utilizing a core-shell isopropyl carbamate cyclofructan 6 chiral column in rat plasma within 3.5 min after solid phase extraction (SPE).


Assuntos
Bioensaio/métodos , Verapamil/sangue , Verapamil/farmacocinética , Administração Oral , Animais , Cromatografia Líquida , Ratos Wistar , Reprodutibilidade dos Testes , Estereoisomerismo , Verapamil/química , Verapamil/isolamento & purificação
7.
Anal Bioanal Chem ; 412(5): 1111-1122, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31865418

RESUMO

In oral bioavailability studies, evaluation of the absorption and transport of drugs and food components across the intestinal barrier is crucial. Advances in the field of organ-on-a-chip technology have resulted in a dynamic gut-on-a-chip model that better mimics the in vivo microenvironment of the intestine. Despite a few recent integration attempts, ensuring a biologically relevant microenvironment while coupling with a fully online detection system still represents a major challenge. Herein, we designed an online technique to measure drug permeability and analyse unknown product formation across an intestinal epithelial layer of Caco-2 and HT29-MTX cells cultured on a flow-through Transwell system, while ensuring the quality and relevance of the biological model. Chip-based ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was coupled to the dynamic Transwell system via a series of switching valves, thus allowing alternating measurements of the apical and basolateral sides of the in vitro model. Two trap columns were integrated for online sample pre-treatment and compatibility enhancement. Temporal analysis of the intestinal permeability was successfully demonstrated using verapamil as a model drug and ergotamine epimers as a model for natural toxins present in foods. Evidence was obtained that our newly developed dynamic system provided reliable results versus classical static in vitro models, and moreover, for the first time, epimer-specific transport is shown for ergotamine. Finally, initial experiments with the drug granisetron suggest that metabolic activity can be studied as well, thus highlighting the versatility of the bio-integrated online analysis system developed. Graphical abstract.


Assuntos
Cromatografia Líquida/métodos , Mucosa Intestinal/metabolismo , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Administração Oral , Disponibilidade Biológica , Biotransformação , Células CACO-2 , Ergotamina/administração & dosagem , Ergotamina/farmacocinética , Granisetron/administração & dosagem , Granisetron/farmacocinética , Células HT29 , Humanos , Técnicas In Vitro , Limite de Detecção , Permeabilidade , Verapamil/administração & dosagem , Verapamil/farmacocinética
8.
Xenobiotica ; 50(6): 713-721, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31633443

RESUMO

In this study, UC rat model was established by administration of 5% (w/v) dextran sulfate sodium, and the pharmacokinetics of verapamil and norverapamil were evaluated in normal and UC rats using UPLC-MS/MS after oral administration of 5 mg/kg and 50 mg/kg verapamil.The peak concentration (Cmax) and the area under plasma concentration-time curves (AUC) of verapamil in UC rats after oral administration of 5 mg/kg were significantly greater (2.5 times and 2 times, respectively) than those in normal rats, but the clearance rate (Cl) was significantly lower (by 50%). For norverapamil, Cmax and AUC were significantly greater (2.8 times and 2.5 times, respectively), and Cl was significantly lower (by 45%). But, pharmacokinetic parameters of verapamil and norverapamil after oral administration of 50 mg/kg were no significant differences between UC and normal rats.The better absorption and poor excretion for low-dose verapamil may be attributed to down-regulation of P-gp expression in the intestine and kidney. No significant differences of pharmacokinetic parameters for high-dose verapamil may be explained as the saturation of an efflux mechanism.The findings of this study suggested that in UC patients, doses of verapamil should be decreased when low-dose verapamil was orally administrated.


Assuntos
Colite Ulcerativa/metabolismo , Verapamil/análogos & derivados , Verapamil/farmacocinética , Administração Oral , Animais , Área Sob a Curva , Bloqueadores dos Canais de Cálcio/farmacocinética , Cromatografia Líquida , Humanos , Masculino , Taxa de Depuração Metabólica/fisiologia , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
9.
J Pharmacokinet Pharmacodyn ; 47(5): 493-512, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32710209

RESUMO

Roux-en-Y gastric bypass surgery (RYGBS) is an effective surgical intervention to reduce mortality in morbidly obese patients. Following RYGBS, the disposition of drugs may be affected by anatomical alterations and changes in intestinal and hepatic drug metabolizing enzyme activity. The aim of this study was to better understand the drug-drug interaction (DDI) potential of CYP3A and P-gp inhibitors. The impacts of RYGBS on the absorption and metabolism of midazolam, acetaminophen, digoxin, and their major metabolites were simulated using physiologically-based pharmacokinetic (PBPK) modeling. PBPK models for verapamil and posaconazole were built to evaluate CYP3A- and P-gp-mediated DDIs pre- and post-RYGBS. The simulations suggest that for highly soluble drugs, such as verapamil, the predicted bioavailability was comparable pre- and post-RYGBS. For verapamil inhibition, RYGBS did not affect the fold-change of the predicted inhibited-to-control plasma AUC ratio or predicted inhibited-to-control peak plasma concentration ratio for either midazolam or digoxin. In contrast, the predicted bioavailability of posaconazole, a poorly soluble drug, decreased from 12% pre-RYGBS to 5% post-RYGBS. Compared to control, the predicted posaconazole-inhibited midazolam plasma AUC increased by 2.0-fold pre-RYGBS, but only increased by 1.6-fold post-RYGBS. A similar trend was predicted for pre- and post-RYGBS inhibited-to-control midazolam peak plasma concentration ratios (2.0- and 1.6-fold, respectively) following posaconazole inhibition. Absorption of highly soluble drugs was more rapid post-RYGBS, resulting in higher predicted midazolam peak plasma concentrations, which was further increased following inhibition by verapamil or posaconazole. To reduce the risk of a drug-drug interaction in patients post-RYGBS, the dose or frequency of object drugs may need to be decreased when administered with highly soluble inhibitor drugs, especially if toxicities are associated with plasma peak concentrations.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Derivação Gástrica/efeitos adversos , Modelos Biológicos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Acetaminofen/administração & dosagem , Acetaminofen/farmacocinética , Administração Oral , Área Sob a Curva , Disponibilidade Biológica , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Digoxina/administração & dosagem , Digoxina/farmacocinética , Relação Dose-Resposta a Droga , Esquema de Medicação , Interações Medicamentosas , Absorção Gastrointestinal , Eliminação Hepatobiliar , Humanos , Eliminação Intestinal , Taxa de Depuração Metabólica , Midazolam/administração & dosagem , Midazolam/farmacocinética , Obesidade Mórbida/cirurgia , Período Pós-Operatório , Triazóis/administração & dosagem , Triazóis/farmacocinética , Verapamil/administração & dosagem , Verapamil/farmacocinética
10.
Bull Exp Biol Med ; 168(4): 465-469, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32146624

RESUMO

We studied pharmacokinetics and bioavailability of verapamil, propranolol, and ethacizine in healthy volunteers after single oral administration under normal conditions and on the second day of simulated antiorthostatic hypokinesia modeling some effects of microgravity. Under conditions of antiorthostatic hypokinesia, a tendency to a decrease in half-elimination period, mean retention time, and volume of distribution and an increase in the rate of absorption, ratio of maximum concentrations, and relative rate of absorption of verapamil and propranolol were revealed. For ethacizine, a statistically significant increase in the time of attaining maximum concentration and volume of distribution and a decrease in the maximum concentration, rate of absorption, ratio of maximum concentrations, and relative rate of absorption under conditions of antiorthostatic hypokinesia were found.


Assuntos
Fármacos Cardiovasculares/farmacocinética , Hipocinesia/sangue , Fenotiazinas/farmacocinética , Propranolol/farmacocinética , Verapamil/farmacocinética , Simulação de Ausência de Peso/métodos , Adulto , Área Sob a Curva , Disponibilidade Biológica , Fármacos Cardiovasculares/sangue , Meia-Vida , Humanos , Hipocinesia/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Fenotiazinas/sangue , Propranolol/sangue , Verapamil/sangue
11.
Drug Metab Dispos ; 47(11): 1291-1306, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31506301

RESUMO

Rivaroxaban is indicated for stroke prevention in nonvalvular atrial fibrillation (AF). Its elimination is mediated by both hepatic metabolism and renal excretion. Consequently, its clearance is susceptible to both intrinsic (pathophysiological) and extrinsic (concomitant drugs) variabilities that in turn implicate bleeding risks. Upon systematic model verification, physiologically based pharmacokinetic (PBPK) models are qualified for the quantitative rationalization of complex drug-drug-disease interactions (DDDIs). Hence, this study aimed to develop and verify a PBPK model of rivaroxaban systematically. Key parameters required to define rivaroxaban's disposition were either obtained from in vivo data or generated via in vitro metabolism and transport kinetic assays. Our developed PBPK model successfully predicted rivaroxaban's clinical pharmacokinetic parameters within predefined success metrics. Consideration of basolateral organic anion transporter 3 (OAT3)-mediated proximal tubular uptake in tandem with apical P-glycoprotein (P-gp)-mediated efflux facilitated mechanistic characterization of the renal elimination of rivaroxaban in both healthy and renal impaired patients. Retrospective drug-drug interaction (DDI) simulations, incorporating in vitro metabolic inhibitory parameters, accurately recapitulated clinically observed attenuation of rivaroxaban's hepatic clearance due to enzyme-mediated DDIs with CYP3A4/2J2 inhibitors (verapamil and ketoconazole). Notably, transporter-mediated DDI simulations between rivaroxaban and the P-gp inhibitor ketoconazole yielded minimal increases in rivaroxaban's systemic exposure when P-gp-mediated efflux was solely inhibited, but were successfully characterized when concomitant basolateral uptake inhibition was incorporated in the simulation. In conclusion, our developed PBPK model of rivaroxaban is systematically verified for prospective interrogation and management of untested yet clinically relevant DDDIs pertinent to AF management using rivaroxaban. SIGNIFICANCE STATEMENT: Rivaroxaban is susceptible to DDDIs comprising renal impairment and P-gp and CYP3A4/2J2 inhibition. Here, systematic construction and verification of a PBPK model of rivaroxaban, with the inclusion of a mechanistic kidney component, provided insight into the previously arcane role of OAT3-mediated basolateral uptake in influencing both clinically observed renal elimination of rivaroxaban and differential extents of transporter-mediated DDIs. The verified model holds potential for investigating clinically relevant DDDIs involving rivaroxaban and designing dosing adjustments to optimize its pharmacotherapy in atrial fibrillation.


Assuntos
Rivaroxabana/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Fibrilação Atrial/tratamento farmacológico , Simulação por Computador , Interações Medicamentosas , Humanos , Cetoconazol/farmacocinética , Rim/metabolismo , Modelos Biológicos , Transportadores de Ânions Orgânicos Sódio-Independentes/fisiologia , Rivaroxabana/uso terapêutico , Verapamil/análogos & derivados , Verapamil/farmacocinética
12.
Molecules ; 24(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987056

RESUMO

Tozadenant is one of the selective adenosine A2a receptor antagonists with a potential to be a new Parkinson's disease (PD) therapeutic drug. In this study, a liquid chromatography-mass spectrometry based bioanalytical method was qualified and applied for the quantitative analysis of tozadenant in rat plasma. A good calibration curve was observed in the range from 1.01 to 2200 ng/mL for tozadenant using a quadratic regression. In vitro and preclinical in vivo pharmacokinetic (PK) properties of tozadenant were studied through the developed bioanalytical methods, and human PK profiles were predicted using physiologically based pharmacokinetic (PBPK) modeling based on these values. The PBPK model was initially optimized using in vitro and in vivo PK data obtained by intravenous administration at a dose of 1 mg/kg in rats. Other in vivo PK data in rats were used to validate the PBPK model. The human PK of tozadenant after oral administration at a dose of 240 mg was simulated by using an optimized and validated PBPK model. The predicted human PK parameters and profiles were similar to the observed clinical data. As a result, optimized PBPK model could reasonably predict the PK in human.


Assuntos
Benzotiazóis/sangue , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Antagonistas do Receptor A2 de Adenosina , Animais , Benzotiazóis/farmacocinética , Ratos , Verapamil/sangue , Verapamil/farmacocinética
13.
Pharm Res ; 35(5): 93, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29532174

RESUMO

PURPOSE: To investigate the blood-to-retina verapamil transport at the blood-retinal barrier (BRB). METHODS: EverFluor FL Verapamil (EFV) was adopted as the fluorescent probe of verapamil, and its transport across the BRB was investigated with common carotid artery infusion in rats. EFV transport at the inner and outer BRB was investigated with TR-iBRB2 cells and RPE-J cells, respectively. RESULTS: The signal of EFV was detected in the retinal tissue during the weak signal of cell impermeable compound. In TR-iBRB2 cells, the localization of EFV differed from that of LysoTracker® Red, a lysosomotropic agent, and was not altered by acute treatment with NH4Cl. In RPE-J cells, the punctate distribution of EFV was partially observed, and this was reduced by acute treatment with NH4Cl. EFV uptake by TR-iBRB2 cells was temperature-dependent and membrane potential- and pH-independent, and was significantly reduced by NH4Cl treatment during no significant effect obtained by different extracellular pH and V-ATPase inhibitor. The EFV uptake by TR-iBRB2 cells was inhibited by cationic drugs, and inhibited by verapamil in a concentration-dependent manner with an IC50 of 98.0 µM. CONCLUSIONS: Our findings provide visual evidence to support the significance of carrier-mediated transport in the blood-to-retina verapamil transport at the BRB.


Assuntos
Barreira Hematorretiniana/metabolismo , Verapamil/farmacocinética , Animais , Bloqueadores dos Canais de Cálcio , Linhagem Celular , Corantes Fluorescentes/química , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Modelos Animais , Permeabilidade , Ratos , Ratos Wistar , Epitélio Pigmentado da Retina , Verapamil/administração & dosagem , Verapamil/química
14.
Xenobiotica ; 48(8): 839-844, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28795912

RESUMO

1. This study investigates the effects of verapamil on the pharmacokinetics of dihydromyricetin in rats and clarifies its main mechanism. 2. The pharmacokinetic profiles of oral or intravenous administration of dihydromyricetin in Sprague-Dawley rats with or without pretreatment with verapamil were investigated. In addition, the effects of verapamil on the transport and metabolic stability of dihydromyricetin were investigated using Caco-2 cell transwell model and rat liver microsomes. 3. In the oral group, verapamil could significantly increase Cmax, and decrease oral clearance of dihydromyricetin (p < 0.05). In the intravenous group, the Cmax also increased compared with the control group, but the difference was not significant. However, the t1/2 and clearance rate decreased than that of the control (p < 0.05). The oral bioavailability increased significantly (p < 0.05) from 3.84% to 6.84% with the pretreatment of verapamil. A markedly higher transport of dihydromyricetin across the Caco-2 cells was observed in the basolateral-to-apical direction and was abrogated in the presence of the P-gp inhibitor, verapamil. Additionally, the intrinsic clearance rate of dihydromyricetin was decreased by the pretreatment with verapamil (27.0 versus 32.5 µL/min/mg protein). 4. Those results indicated that verapamil could significantly change the pharmacokinetic profiles of dihydromyricetin in rats, and it might exert these effects through increasing the absorption of dihydromyricetin by inhibiting the activity of P-gp, or through inhibiting the metabolism of dihydromyricetin in rat liver.


Assuntos
Flavonóis/farmacocinética , Verapamil/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Células CACO-2 , Flavonóis/farmacologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Verapamil/farmacologia
15.
Br J Clin Pharmacol ; 83(9): 1991-1999, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28401570

RESUMO

AIMS: The efflux transporter P-glycoprotein (ABCB1) acts at the blood-brain barrier (BBB) to restrict the distribution of many different drugs from blood to the brain. Previous data suggest an age-associated decrease in the expression and function of ABCB1 at the BBB. In the present study, we investigated the influence of age on the magnitude of an ABCB1-mediated drug-drug interaction (DDI) at the BBB. METHODS: We performed positron emission tomography scans using the model ABCB1 substrate (R)-[11 C]verapamil in five young [26 ± 1 years, (mean ± standard deviation)] and five elderly (68 ± 6 years) healthy male volunteers before and after intravenous administration of a low dose of the ABCB1 inhibitor tariquidar (3 mg kg-1 ). RESULTS: In baseline scans, the total distribution volume (VT ) of (R)-[11 C]verapamil in whole-brain grey matter was not significantly different between the elderly (VT  = 0.78 ± 0.15) and young (VT  = 0.79 ± 0.10) group. After partial (incomplete) ABCB1 inhibition, VT values were significantly higher (P = 0.040) in the elderly (VT  = 1.08 ± 0.15) than in the young (VT  = 0.80 ± 0.18) group. The percentage increase in (R)-[11 C]verapamil VT following partial ABCB1 inhibition was significantly greater (P = 0.032) in elderly (+40 ± 17%) than in young (+2 ± 17%) volunteers. Tariquidar plasma concentrations were not significantly different between the young (786 ± 178 nmol l-1 ) and elderly (1116 ± 347 nmol l-1 ) group. CONCLUSIONS: Our results provide the first direct evidence of an increased risk for ABCB1-mediated DDIs at the BBB in elderly persons, which may have important consequences for pharmacotherapy of the elderly.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Substância Cinzenta/metabolismo , Quinolinas/farmacologia , Verapamil/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Adulto , Fatores Etários , Idoso , Radioisótopos de Carbono/metabolismo , Interações Medicamentosas , Voluntários Saudáveis , Humanos , Masculino , Tomografia por Emissão de Pósitrons
16.
Zhongguo Zhong Yao Za Zhi ; 42(8): 1539-1544, 2017 Apr.
Artigo em Zh | MEDLINE | ID: mdl-29071859

RESUMO

To validate in situ rats intestinal single pass perfusion model based on P-glycoprotein (P-gp). Firstly, phenol red perfusion was carried out to verify the close connection structure of intestinal epithelial cells, and the integrity of the intestinal epithelium, with a gravimetric method for correcting water flux. The level of phenol red was determined by high performance liquid chromatography (HPLC) both before and after perfusion. Secondly, the positive drug digoxin specified by FDA was used to validate the model. After different mass concentrations of verapamil were given in the rats, the absorption parameters of digoxin in ileum of rats were observed and compared. The results showed that the phenol red was absorbed in rats ileum segment, with an effective permeability coefficient of (1.09±0.62)×10 ⁻6 cm•s ⁻¹. The experiment results indicated that the close connection structure of intestinal epithelial cells was normal, and the integrity of the intestinal epithelium was maintained well. In digoxin perfusion experiment, in case no verapamil was given, digoxin showed certain degree of absorption in rat ileum, with an effective permeability coefficient (Peff) of (1.07±0.59)×10 ⁻5 cm•s ⁻¹; after mass concentrations of 0.01,0.1 mmol•L ⁻¹ verapamil were given, the absorption of digoxin was on the rise in rat ileum, with an effective permeability coefficient Peff of (1.58±0.69)×10 ⁻5, (3.28±0.95)×10 ⁻5 cm•s ⁻¹ respectively (P<0.05). Digoxin perfusion experiment verified that P-gp expression in small intestine epithelium was intact and can be used in the research of P-gp efflux transporter.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Digoxina/farmacocinética , Absorção Intestinal , Perfusão , Verapamil/farmacocinética , Animais , Íleo/efeitos dos fármacos , Ratos
17.
Mol Pharm ; 13(7): 2443-56, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27276518

RESUMO

The purpose of this study was to investigate whether a pharmacokinetic model integrating in vitro mdr1a efflux activity (which we previously reported) with in vitro/in vivo differences in protein expression level can reconstruct intestinal mdr1a function. In situ intestinal permeability-surface area product ratio between wild-type and mdr1a/1b (-/-) mice is one of the parameters used to describe intestinal mdr1a function. The reconstructed ratios of six mdr1a substrates (dexamethasone, digoxin, loperamide, quinidine, verapamil, vinblastine) and one nonsubstrate (diazepam) were consistent with the observed values reported by Adachi et al. within 2.1-fold difference. Thus, intestinal mdr1a function can be reconstructed by our pharmacoproteomic modeling approach. Furthermore, we evaluated regional differences in protein expression levels of mouse intestinal transporters. Sixteen (mdr1a, mrp4, bcrp, abcg5, abcg8, glut1, 4f2hc, sglt1, lat2, pept1, mct1, slc22a18, ostß, villin1, Na(+)/K(+)-ATPase, γ-gtp) out of 46 target molecules were detected by employing our established quantitative targeted absolute proteomics technique. The protein expression amounts of mdr1a and bcrp increased progressively from duodenum to ileum. Sglt1, lat2, and 4f2hc were highly expressed in jejunum and ileum. Mct1 and ostß were highly expressed in ileum. The quantitative expression profiles established here should be helpful to understand and predict intestinal transporter functions.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Intestino Delgado/metabolismo , Proteômica/métodos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Dexametasona/farmacocinética , Digoxina/farmacocinética , Duodeno/metabolismo , Íleo/metabolismo , Absorção Intestinal , Jejuno/metabolismo , Loperamida/farmacocinética , Camundongos , Camundongos Knockout , Quinidina/farmacocinética , Verapamil/farmacocinética , Vimblastina/farmacocinética , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
18.
Pharm Biol ; 54(12): 3001-3008, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27328778

RESUMO

CONTEXT: Clarifying the potential mechanism of the poor oral bioavailability of curculigoside would be helpful for for investigating pharmacological effects and clinical applications. OBJECTIVE: To clarify the main mechanism for poor oral bioavailability. MATERIALS AND METHODS: First, the pharmacokinetics of curculigoside (20 mg/kg) in rats with and without pretreatment with verapamil (10 mg/kg) was determined using a sensitive and reliable LC-MS method. Then the effects of verapamil on the transport and metabolic stability of curculigoside were investigated using Caco-2 cell transwell model and rat liver microsome incubation systems. RESULTS: The results showed that verapamil could significantly increase the peak plasma concentration (from 60.17 ng/mL to 93.66 ng/mL) and AUC0-t (from 289.57 to 764.02 ng·h/mL) of curculigoside. The Caco-2 cell experiments indicated that the efflux ratio of curculigoside was 3.92 (PappAB 6.43 ± 0.57 × 10 -7 cm/s; PappBA 2.52 ± 0.37 × 10 -36 cm/s), P-gp might be involved in the transport of curculigoside, and verapamil could inhibit the efflux of curculigoside and increase the absorption of curculigoside significantly in the Caco-2 cell monolayer. Additionally, the rat liver microsome incubation experiments indicated that verapamil could significantly decrease the intrinsic clearance rate of curculigoside (from 38.8 to 23.6 µL/min/mg protein). DISCUSSION AND CONCLUSION: These results indicated that verapamil could significantly change the pharmacokinetic profiles of curculigoside in rats, the poor absorption due to P-gp mediated efflux in intestine and high intrinsic clearance rate in rat liver may be the main reason for the poor oral absolute bioavailability of curculigoside.


Assuntos
Benzoatos/farmacocinética , Glucosídeos/farmacocinética , Verapamil/farmacocinética , Administração Oral , Animais , Benzoatos/administração & dosagem , Células CACO-2 , Cromatografia Líquida/métodos , Interações Medicamentosas/fisiologia , Glucosídeos/administração & dosagem , Humanos , Masculino , Espectrometria de Massas/métodos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Verapamil/administração & dosagem
19.
Drug Metab Dispos ; 43(4): 631-45, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25650380

RESUMO

We applied physiologically based pharmacokinetic (PBPK) modeling to study the dose-dependent metabolism and excretion of verapamil and its preformed metabolite, norverapamil, to unravel the kinetics of norverapamil formation via N-demethylation. Various initial verapamil (1, 50, and 100 µM) and preformed norverapamil (1.5 and 5 µM) concentrations, perfused at 12 ml/min, were investigated in the perfused rat liver preparation. Perfusate and bile were collected over 90 minutes, and livers were harvested at the end of perfusion for high-performance liquid chromatography analysis. After correction for the adsorption of 10%-25% dose verapamil and norverapamil onto Tygon tubing and binding to albumin and red blood cell, fitting of verapamil and formed and preformed norverapamil data with ADAPT5 revealed nonlinearity for protein binding, N-demethylation (V(max,met1)(VER --> NOR) = 96.6 ± 33.4 nmol/min; K(m,met1)(VER --> NOR) = 10.4 ± 4.1 µM), formation of other metabolites (V(max,met2(VER -->others) 288 ± 51 nmol/min; K(m.met2)(VER -->others )= 14.1 ± 4.9 µM), as well as biliary excretion (V(max,sec)(VER)= 0.911 ± 0.505 nmol/min; K(m,sec)(VER) = 4.75 ± 2.29 µM). The hepatic clearance of verapamil (CL(L)(VER) decreased with the dose (8.16-10.2 ml/min), with values remaining high relative to perfusate blood flow rate among the doses. The hepatic clearance of preformed norverapamil (11 ml/min) remained unchanged for the concentrations studied and approximated perfusate blood flow rate, suggesting a high norverapamil extraction ratio. The fractional formation of norverapamil and biliary excretion of verapamil based on fitted constants were 31.1% and 0.64% of CL(L)(VER), respectively. Enantiomeric disposition and auto-inhibition of verapamil failed to perturb these estimaties according to PBPK modeling, due to the low values of the Michaelis-Menten constant, Km, and inhibition parameter, kI.


Assuntos
Eritrócitos/metabolismo , Fígado/metabolismo , Modelos Biológicos , Verapamil/análogos & derivados , Animais , Proteínas Sanguíneas/metabolismo , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Masculino , Taxa de Depuração Metabólica , Dinâmica não Linear , Perfusão , Ligação Proteica , Ratos Sprague-Dawley , Estereoisomerismo , Fatores de Tempo , Distribuição Tecidual , Verapamil/sangue , Verapamil/química , Verapamil/metabolismo , Verapamil/farmacocinética
20.
Int J Neuropsychopharmacol ; 18(10): pyv036, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25813017

RESUMO

BACKGROUND: Positron emission tomography microdosing of radiolabeled drugs allows for noninvasive studies of organ exposure in vivo. The aim of the present study was to examine and compare the brain exposure of 12 commercially available CNS drugs and one non-CNS drug. METHODS: The drugs were radiolabeled with (11)C (t 1/2 = 20.4 minutes) and examined using a high resolution research tomograph. In cynomolgus monkeys, each drug was examined twice. In rhesus monkeys, a first positron emission tomography microdosing measurement was repeated after preadministration with unlabeled drug to examine potential dose-dependent effects on brain exposure. Partition coefficients between brain and plasma (KP) were calculated by dividing the AUC0-90 min for brain with that for plasma or by a compartmental analysis (VT). Unbound KP (KP u,u) was obtained by correction for the free fraction in brain and plasma. RESULTS: After intravenous injection, the maximum radioactivity concentration (C max, %ID) in brain ranged from 0.01% to 6.2%. For 10 of the 12 CNS drugs, C max, %ID was >2%, indicating a preferential distribution to brain. A lower C max, %ID was observed for morphine, sulpiride, and verapamil. K P ranged from 0.002 (sulpiride) to 68 (sertraline) and 7 of 13 drugs had KP u,u close to unity. For morphine, sulpiride, and verapamil, K P u,u was <0.3, indicating impaired diffusion and/or active efflux. Brain exposure at microdosing agreed with pharmacological dosing conditions for the investigated drugs. CONCLUSIONS: This study represents the largest positron emission tomography study on brain exposure of commercially available CNS drugs in nonhuman primates and may guide interpretation of positron emission tomography microdosing data for novel drug candidates.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Fármacos do Sistema Nervoso Central/farmacocinética , Morfina/farmacocinética , Sulpirida/farmacocinética , Verapamil/farmacocinética , Animais , Encéfalo/metabolismo , Radioisótopos de Carbono , Fármacos do Sistema Nervoso Central/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Macaca fascicularis , Macaca mulatta , Modelos Biológicos , Modelos Químicos , Morfina/administração & dosagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Sulpirida/administração & dosagem , Verapamil/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA