Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.089
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 183(6): 1457-1461, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33242423

RESUMO

As of 2020, fewer than 600 individuals have left Earth to experience work and life in space. That number will grow as government-funded and commercial space programs move forward in countries around the globe. There are however major questions about how humans respond to spaceflight at every level, from the whole body to individual organs to specific cells to molecular pathways. Preparing for a future where longer-duration spaceflights are anticipated and people can begin to contemplate space tourism, researchers are studying astronauts to understand how the human system is affected by and adapts to space. Lara Szewczak got a window on this world, speaking with retired astronaut Scott Kelly about his late-blooming interest in science, what he's learned through the NASA Twins Study, and why space vacations might not be for everyone. They were joined by Chris Mason, a lead investigator looking at the 'omics of spaceflight. Excerpts from this conversation are presented below, and the full conversation is available with the article online.


Assuntos
Astronautas , História do Século XX , História do Século XXI , Humanos , Voo Espacial
2.
Cell ; 183(5): 1162-1184, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33242416

RESUMO

Research on astronaut health and model organisms have revealed six features of spaceflight biology that guide our current understanding of fundamental molecular changes that occur during space travel. The features include oxidative stress, DNA damage, mitochondrial dysregulation, epigenetic changes (including gene regulation), telomere length alterations, and microbiome shifts. Here we review the known hazards of human spaceflight, how spaceflight affects living systems through these six fundamental features, and the associated health risks of space exploration. We also discuss the essential issues related to the health and safety of astronauts involved in future missions, especially planned long-duration and Martian missions.


Assuntos
Meio Ambiente Extraterreno , Voo Espacial , Astronautas , Saúde , Humanos , Microbiota , Fatores de Risco
3.
Cell ; 183(5): 1185-1201.e20, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33242417

RESUMO

Spaceflight is known to impose changes on human physiology with unknown molecular etiologies. To reveal these causes, we used a multi-omics, systems biology analytical approach using biomedical profiles from fifty-nine astronauts and data from NASA's GeneLab derived from hundreds of samples flown in space to determine transcriptomic, proteomic, metabolomic, and epigenetic responses to spaceflight. Overall pathway analyses on the multi-omics datasets showed significant enrichment for mitochondrial processes, as well as innate immunity, chronic inflammation, cell cycle, circadian rhythm, and olfactory functions. Importantly, NASA's Twin Study provided a platform to confirm several of our principal findings. Evidence of altered mitochondrial function and DNA damage was also found in the urine and blood metabolic data compiled from the astronaut cohort and NASA Twin Study data, indicating mitochondrial stress as a consistent phenotype of spaceflight.


Assuntos
Genômica , Mitocôndrias/patologia , Voo Espacial , Estresse Fisiológico , Animais , Ritmo Circadiano , Matriz Extracelular/metabolismo , Humanos , Imunidade Inata , Metabolismo dos Lipídeos , Análise do Fluxo Metabólico , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Músculos/imunologia , Especificidade de Órgãos , Olfato/fisiologia
4.
Cell ; 179(5): 1003-1009, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730844

RESUMO

Astronauts and cancer patients are subject to similar multisystem physiological toxicities. Over the past sixty years, NASA developed a state-of-the-art countermeasures program (CMP) to characterize and mitigate the physiological consequences of spaceflight. Here, we propose a NASA-modeled CMP to elucidate and abrogate physiological toxicities in patients with cancer.


Assuntos
Neoplasias/patologia , United States National Aeronautics and Space Administration , Astronautas , Humanos , Contramedidas Médicas , Voo Espacial , Estados Unidos
5.
Physiol Rev ; 99(1): 807-851, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30540225

RESUMO

This review presents lower body negative pressure (LBNP) as a unique tool to investigate the physiology of integrated systemic compensatory responses to altered hemodynamic patterns during conditions of central hypovolemia in humans. An early review published in Physiological Reviews over 40 yr ago (Wolthuis et al. Physiol Rev 54: 566-595, 1974) focused on the use of LBNP as a tool to study effects of central hypovolemia, while more than a decade ago a review appeared that focused on LBNP as a model of hemorrhagic shock (Cooke et al. J Appl Physiol (1985) 96: 1249-1261, 2004). Since then there has been a great deal of new research that has applied LBNP to investigate complex physiological responses to a variety of challenges including orthostasis, hemorrhage, and other important stressors seen in humans such as microgravity encountered during spaceflight. The LBNP stimulus has provided novel insights into the physiology underlying areas such as intolerance to reduced central blood volume, sex differences concerning blood pressure regulation, autonomic dysfunctions, adaptations to exercise training, and effects of space flight. Furthermore, approaching cardiovascular assessment using prediction models for orthostatic capacity in healthy populations, derived from LBNP tolerance protocols, has provided important insights into the mechanisms of orthostatic hypotension and central hypovolemia, especially in some patient populations as well as in healthy subjects. This review also presents a concise discussion of mathematical modeling regarding compensatory responses induced by LBNP. Given the diverse applications of LBNP, it is to be expected that new and innovative applications of LBNP will be developed to explore the complex physiological mechanisms that underline health and disease.


Assuntos
Pressão Sanguínea/fisiologia , Hemodinâmica/fisiologia , Hipotensão Ortostática/fisiopatologia , Hipovolemia/fisiopatologia , Pressão Negativa da Região Corporal Inferior , Animais , Humanos , Voo Espacial
6.
Physiol Rev ; 98(1): 59-87, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167331

RESUMO

Visual impairment intracranial pressure (VIIP) syndrome is considered an unexplained major risk for future long-duration spaceflight. NASA recently redefined this syndrome as Spaceflight-Associated Neuro-ocular Syndrome (SANS). Evidence thus reviewed supports that chronic, mildly elevated intracranial pressure (ICP) in space (as opposed to more variable ICP with posture and activity on Earth) is largely accounted for by loss of hydrostatic pressures and altered hemodynamics in the intracranial circulation and the cerebrospinal fluid system. In space, an elevated pressure gradient across the lamina cribrosa, caused by a chronic but mildly elevated ICP, likely elicits adaptations of multiple structures and fluid systems in the eye which manifest themselves as the VIIP syndrome. A chronic mismatch between ICP and intraocular pressure (IOP) in space may acclimate the optic nerve head, lamina cribrosa, and optic nerve subarachnoid space to a condition that is maladaptive to Earth, all contributing to the pathogenesis of space VIIP syndrome. Relevant findings help to evaluate whether artificial gravity is an appropriate countermeasure to prevent this seemingly adverse effect of long-duration spaceflight.


Assuntos
Hipertensão Intracraniana/fisiopatologia , Pressão Intracraniana/fisiologia , Pressão Intraocular/fisiologia , Postura/fisiologia , Voo Espacial , Transtornos da Visão/fisiopatologia , Animais , Humanos , Hipertensão Intracraniana/etiologia , Hipertensão Intracraniana/patologia , Transtornos da Visão/etiologia , Transtornos da Visão/patologia
7.
FASEB J ; 38(14): e23831, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39037540

RESUMO

Depression is a significant concern among astronauts, yet the molecular mechanisms underlying spaceflight-induced depression remain poorly understood. MicroRNAs (miRNAs) have emerged as potential regulators of neuropsychiatric disorders, including depression, but their specific role in space-induced depression remains unexplored. This study aimed to elucidate the involvement of candidate miRNAs (miR-455-3p, miR-206-3p, miR-132-3p, miR-16-5p, miR-124-3p, and miR-145-3p) and their interaction with differentially expressed genes (DEGs) in the neurobiology of spaceflight-induced depressive behavior. Using a simulated space environmental model (SCSE) for 21 days, depressive behavior was induced in rats, and candidate miRNA expressions and DEGs in the cortex region were analyzed through qRT-PCR and HPLC, respectively. Results showed that SCSE-exposed rats exhibited depressive behaviors, including anhedonia, increased immobility, and anxiousness compared to controls. Further analysis revealed increased hydrogen peroxide levels and decreased superoxide dismutase levels in the SCSE group, indicating abnormal oxidative stress in the cerebral cortex. Moreover, miRNA analysis demonstrated significant upregulation of miR-455-3p, miR-206-3p, miR-132-3p, and miR-16-5p expression. Among the DEGs identified, the in silico analysis highlighted their involvement in crucial pathways such as glutamatergic signaling, GABA synaptic pathway, and calcium signaling, implicating their role in spaceflight-induced depression. Protein-protein interaction analysis identified hub genes, including DLG4, DLG3, GRIN1, GRIN2B, GRIN2A, SYNGAP1, DLGAP1, GRIK2, and GRIN3A, impacting neuronal dysfunction functions in the cortex region of SCSE depressive rats. DLG4 emerged as a core gene regulated by miR-455-3p and miR-206-3p. Overall, this study underscores the potential of miRNAs as biomarkers for mood disorders and neurological abnormalities associated with spaceflight, advancing health sciences, and space health care.


Assuntos
Depressão , MicroRNAs , Voo Espacial , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Masculino , Depressão/metabolismo , Depressão/etiologia , Depressão/genética , Ratos Sprague-Dawley , Modelos Animais de Doenças
8.
Nature ; 568(7750): 55-60, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30890786

RESUMO

NASA'S Origins, Spectral Interpretation, Resource Identification and Security-Regolith Explorer (OSIRIS-REx) spacecraft recently arrived at the near-Earth asteroid (101955) Bennu, a primitive body that represents the objects that may have brought prebiotic molecules and volatiles such as water to Earth1. Bennu is a low-albedo B-type asteroid2 that has been linked to organic-rich hydrated carbonaceous chondrites3. Such meteorites are altered by ejection from their parent body and contaminated by atmospheric entry and terrestrial microbes. Therefore, the primary mission objective is to return a sample of Bennu to Earth that is pristine-that is, not affected by these processes4. The OSIRIS-REx spacecraft carries a sophisticated suite of instruments to characterize Bennu's global properties, support the selection of a sampling site and document that site at a sub-centimetre scale5-11. Here we consider early OSIRIS-REx observations of Bennu to understand how the asteroid's properties compare to pre-encounter expectations and to assess the prospects for sample return. The bulk composition of Bennu appears to be hydrated and volatile-rich, as expected. However, in contrast to pre-encounter modelling of Bennu's thermal inertia12 and radar polarization ratios13-which indicated a generally smooth surface covered by centimetre-scale particles-resolved imaging reveals an unexpected surficial diversity. The albedo, texture, particle size and roughness are beyond the spacecraft design specifications. On the basis of our pre-encounter knowledge, we developed a sampling strategy to target 50-metre-diameter patches of loose regolith with grain sizes smaller than two centimetres4. We observe only a small number of apparently hazard-free regions, of the order of 5 to 20 metres in extent, the sampling of which poses a substantial challenge to mission success.


Assuntos
Meio Ambiente Extraterreno/química , Planetas Menores , Voo Espacial , Exobiologia , Origem da Vida , Voo Espacial/instrumentação , Propriedades de Superfície
14.
Proc Natl Acad Sci U S A ; 119(17): e2120439119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35412862

RESUMO

Long-duration spaceflight induces changes to the brain and cerebrospinal fluid compartments and visual acuity problems known as spaceflight-associated neuro-ocular syndrome (SANS). The clinical relevance of these changes and whether they equally affect crews of different space agencies remain unknown. We used MRI to analyze the alterations occurring in the perivascular spaces (PVS) in NASA and European Space Agency astronauts and Roscosmos cosmonauts after a 6-mo spaceflight on the International Space Station (ISS). We found increased volume of basal ganglia PVS and white matter PVS (WM-PVS) after spaceflight, which was more prominent in the NASA crew than the Roscosmos crew. Moreover, both crews demonstrated a similar degree of lateral ventricle enlargement and decreased subarachnoid space at the vertex, which was correlated with WM-PVS enlargement. As all crews experienced the same environment aboard the ISS, the differences in WM-PVS enlargement may have been due to, among other factors, differences in the use of countermeasures and high-resistive exercise regimes, which can influence brain fluid redistribution. Moreover, NASA astronauts who developed SANS had greater pre- and postflight WM-PVS volumes than those unaffected. These results provide evidence for a potential link between WM-PVS fluid and SANS.


Assuntos
Astronautas , Líquido Cefalorraquidiano , Sistema Glinfático , Voo Espacial , Transtornos da Visão , Líquido Cefalorraquidiano/diagnóstico por imagem , Sistema Glinfático/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Transtornos da Visão/líquido cefalorraquidiano , Transtornos da Visão/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
15.
Proteomics ; 24(10): e2300328, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38185763

RESUMO

The molecular mechanisms associated with spaceflight-induced biological adaptations that may affect many healthy tissue functions remain poorly understood. In this study, we analyzed temporal changes in the serum proteome of six astronauts during prolonged spaceflight missions using quantitative comprehensive proteome analysis performed with the data-independent acquisition method of mass spectrometry (DIA-MS). All six astronauts participated in a spaceflight mission for approximately 6 months and showed a decreasing trend in T-scores at almost all sites where dual-energy X-ray absorptiometry scans were performed. DIA-MS successfully identified 624 nonredundant proteins in sera and further quantitative analysis for each sampling point provided information on serum protein profiles closely related to several time points before (pre-), during (in-), and after (post-) spaceflight. Changes in serum protein levels between spaceflight and on the ground suggest that abnormalities in bone metabolism are induced in astronauts during spaceflight. Furthermore, changes in the proteomic profile occurring during spaceflight suggest that serum levels of bone metabolism-related proteins, namely ALPL, COL1A1, SPP1, and POSTN, could serve as highly responsive indicators of bone metabolism status in spaceflight missions. This study will allow us to accelerate research to improve our understanding of the molecular mechanisms of biological adaptations associated with prolonged spaceflight.


Assuntos
Astronautas , Proteoma , Voo Espacial , Humanos , Proteoma/metabolismo , Proteoma/análise , Masculino , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Proteômica/métodos , Pessoa de Meia-Idade , Adulto , Espectrometria de Massas/métodos
16.
Proteomics ; 24(9): e2300214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38475964

RESUMO

Physical inactivity associated with gravity unloading, such as microgravity during spaceflight and hindlimb unloading (HU), can cause various physiological changes. In this study, we attempted to identify serum proteins whose levels fluctuated in response to gravity unloading. First, we quantitatively assessed changes in the serum proteome profiles of spaceflight mice using mass spectrometry with data-independent acquisition. The serum levels of several proteins involved in the responses to estrogen and glucocorticoid, blood vessel maturation, osteoblast differentiation, and ossification were changed by microgravity exposure. Furthermore, a collective evaluation of serum proteomic data from spaceflight and HU mice identified 30 serum proteins, including Mmp2, Igfbp2, Tnc, Cdh5, and Pmel, whose levels varied to a similar extent in both gravity unloading models. These changes in serum levels could be involved in the physiological changes induced by gravity unloading. A collective evaluation of serum, femur, and soleus muscle proteome data of spaceflight mice also showed 24 serum proteins, including Igfbp5, Igfbp3, and Postn, whose levels could be associated with biological changes induced by microgravity. This study examined serum proteome profiles in response to gravity unloading, and may help deepen our understanding of microgravity adaptation mechanisms during prolonged spaceflight missions.


Assuntos
Proteínas Sanguíneas , Proteômica , Voo Espacial , Ausência de Peso , Animais , Camundongos , Proteômica/métodos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análise , Espectrometria de Massas/métodos , Elevação dos Membros Posteriores , Proteoma/metabolismo , Proteoma/análise , Masculino , Camundongos Endogâmicos C57BL
17.
Plant Mol Biol ; 114(4): 79, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935184

RESUMO

Plants are expected to play a critical role in the biological life support systems of crewed spaceflight missions, including in the context of upcoming missions targeting the Moon and Mars. Therefore, understanding the response of plants to spaceflight is essential for improving the selection and engineering of plants and spaceflight conditions. In particular, understanding the root-tip's response to spaceflight is of importance as it is the center of orchestrating the development of the root, the primary organ for the absorption of nutrients and anchorage. GLDS-120 is a pioneering study by Paul et al. that used transcriptomics to evaluate the spaceflight response of the root-tip of the model plant Arabidopsis thaliana in dark and light through separate analyses of three genotype groups (Wassilewskija, Columbia-0, and Columbia-0 PhyD) and comparison of genotype responses. Here, we provide a complementary analysis of this dataset through a combined analysis of all samples while controlling for the genotypes in a paired analysis. We identified a robust transcriptional response to spaceflight with 622 DEGs in light and 200 DEGs in dark conditions. Gene enrichment analysis identified 37 and 13 significantly enriched terms from biological processes in light and dark conditions, respectively. Prominent enrichment for hypoxia-related terms in both conditions suggests hypoxia is a key stressor for root development during spaceflight. Additional enriched terms in light conditions include the circadian cycle, light response, and terms for the metabolism of flavonoid and indole-containing compounds. These results further our understanding of plants' responses to the spaceflight environment.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Voo Espacial , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Genótipo , Perfilação da Expressão Gênica , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/efeitos da radiação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Transcriptoma , Luz , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
18.
J Neurophysiol ; 131(5): 785-788, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38533966

RESUMO

The etiology of spaceflight-associated neuro-ocular syndrome (SANS) is a developing field of research, with many current hypotheses receiving varying degrees of support. This syndrome affects ∼70% of astronauts both during and after long-duration space missions, resulting in impaired near vision and visual scotomas (blind spots). In this article, three prominent risk factors for SANS including zero gravity conditions, extraterrestrial hypercapnic environments, and individual genetic predisposition are described. These risk factors are then compared and their pathophysiological pathways are divided into five current hypotheses for the development of SANS. Finally, glymphatic system impairment is explored as a potential mutual end point for these pathways in the development of SANS.


Assuntos
Sistema Glinfático , Voo Espacial , Humanos , Sistema Glinfático/fisiopatologia , Transtornos da Visão/etiologia , Transtornos da Visão/fisiopatologia
19.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36198665

RESUMO

As space exploration programs progress, manned space missions will become more frequent and farther away from Earth, putting a greater emphasis on astronaut health. Through the collaborative efforts of researchers from various countries, the effect of the space environment factors on living systems is gradually being uncovered. Although a large number of interconnected research findings have been produced, their connection seems to be confused, and many unknown effects are left to be discovered. Simultaneously, several valuable data resources have emerged, accumulating data measuring biological effects in space that can be used to further investigate the unknown biological adaptations. In this review, the previous findings and their correlations are sorted out to facilitate the understanding of biological adaptations to space and the design of countermeasures. The biological effect measurement methods/data types are also organized to provide references for experimental design and data analysis. To aid deeper exploration of the data resources, we summarized common characteristics of the data generated from longitudinal experiments, outlined challenges or caveats in data analysis and provided corresponding solutions by recommending bioinformatics strategies and available models/tools.


Assuntos
Disciplinas das Ciências Biológicas , Voo Espacial , Biologia Computacional
20.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35576010

RESUMO

Many computational methods are devoted to rapidly generating pseudo-natural products to expand the open-ended border of chemical spaces for natural products. However, the accessibility and chemical interpretation were often ignored or underestimated in conventional library/fragment-based or rule-based strategies, thus hampering experimental synthesis. Herein, a bio-inspired strategy (named TeroGen) is developed to mimic the two key biosynthetic stages (cyclization and decoration) of terpenoid natural products, by utilizing physically based simulations and deep learning models, respectively. The precision and efficiency are validated for different categories of terpenoids, and in practice, more than 30 000 sesterterpenoids (10 times as many as the known sesterterpenoids) are predicted to be linked in a reaction network, and their synthetic accessibility and chemical interpretation are estimated by thermodynamics and kinetics. Since it could not only greatly expand the chemical space of terpenoids but also numerate plausible biosynthetic routes, TeroGen is promising for accelerating heterologous biosynthesis, bio-mimic and chemical synthesis of complicated terpenoids and derivatives.


Assuntos
Produtos Biológicos , Voo Espacial , Terpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA