RESUMO
Spermatogenesis is driven by an ordered series of events, which rely on trafficking of specific proteins between nucleus and cytoplasm. The karyopherin α family of proteins mediates movement of specific cargo proteins when bound to karyopherin ß. Karyopherin α genes have distinct expression patterns in mouse testis, implying they may have unique roles during mammalian spermatogenesis. Here, we use a loss-of-function approach to determine specifically the role of Kpna6 in spermatogenesis and male fertility. We show that ablation of Kpna6 in male mice leads to infertility and has multiple cumulative effects on both germ cells and Sertoli cells. Kpna6-deficient mice exhibit impaired Sertoli cell function, including loss of Sertoli cells and a compromised nuclear localization of the androgen receptor. Furthermore, our data demonstrate devastating defects on spermiogenesis, including incomplete sperm maturation and a massive reduction in sperm number, accompanied by disturbed histone-protamine exchange, differential localization of the transcriptional regulator BRWD1 and altered expression of RFX2 target genes. Our work uncovers an essential role of Kpna6 in spermatogenesis and, hence, in male fertility.
Assuntos
Infertilidade Masculina/metabolismo , Espermatogênese , alfa Carioferinas/genética , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Infertilidade Masculina/genética , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Androgênicos/metabolismo , Células de Sertoli/metabolismo , Espermatogônias/metabolismo , alfa Carioferinas/deficiência , alfa Carioferinas/metabolismoRESUMO
Satellite cells are stem cells with an essential role in skeletal muscle repair. Precise regulation of gene expression is critical for proper satellite cell quiescence, proliferation, differentiation and self-renewal. Nuclear proteins required for gene expression are dependent on the nucleocytoplasmic transport machinery to access to nucleus, however little is known about regulation of nuclear transport in satellite cells. The best characterized nuclear import pathway is classical nuclear import which depends on a classical nuclear localization signal (cNLS) in a cargo protein and the heterodimeric import receptors, karyopherin alpha (KPNA) and beta (KPNB). Multiple KPNA1 paralogs exist and can differ in importing specific cNLS proteins required for cell differentiation and function. We show that transcripts for six Kpna paralogs underwent distinct changes in mouse satellite cells during muscle regeneration accompanied by changes in cNLS proteins in nuclei. Depletion of KPNA1, the most dramatically altered KPNA, caused satellite cells in uninjured muscle to prematurely activate, proliferate and undergo apoptosis leading to satellite cell exhaustion with age. Increased proliferation of satellite cells led to enhanced muscle regeneration at early stages of regeneration. In addition, we observed impaired nuclear localization of two key KPNA1 cargo proteins: p27, a cyclin-dependent kinase inhibitor associated with cell cycle control and lymphoid enhancer factor 1, a critical cotranscription factor for ß-catenin. These results indicate that regulated nuclear import of proteins by KPNA1 is critical for satellite cell proliferation and survival and establish classical nuclear import as a novel regulatory mechanism for controlling satellite cell fate. Stem Cells 2016;34:2784-2797.
Assuntos
Núcleo Celular/metabolismo , Músculo Esquelético/metabolismo , Sinais de Localização Nuclear/genética , Regeneração/genética , Células Satélites de Músculo Esquelético/metabolismo , alfa Carioferinas/genética , Transporte Ativo do Núcleo Celular/genética , Animais , Compostos de Bário/toxicidade , Proliferação de Células , Sobrevivência Celular , Cloretos/toxicidade , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Citoplasma/metabolismo , Feminino , Regulação da Expressão Gênica , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/lesões , Sinais de Localização Nuclear/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Satélites de Músculo Esquelético/citologia , Transdução de Sinais , alfa Carioferinas/deficiência , beta Catenina/genética , beta Catenina/metabolismoRESUMO
Influenza A viruses recruit components of the nuclear import pathway to enter the host cell nucleus and promote viral replication. Here, we analyzed the role of the nuclear import factor importin-α7 in H1N1 influenza virus pulmonary tropism by using various ex vivo imaging techniques (magnetic resonance imaging, confocal laser scanning microscopy, and correlative light-electron microscopy). We infected importin-α7 gene-deficient (α7(-/-)) mice with a recombinant H1N1 influenza virus and compared the in vivo viral kinetics with those in wild-type (WT) mice. In WT mice, influenza virus replication in the bronchial and alveolar epithelium already occurred a few days after infection. Accordingly, extensive mononuclear infiltration and alveolar destruction were present in the lungs of infected WT mice, followed by 100% lethality. Conversely, in α7(-/-) mice, virus replication was restricted mostly to the bronchial epithelium with marginal alveolar infection, resulting in significantly reduced lung damage and enhanced animal survival. To investigate the host immune response during alveolar virus replication, we studied the role of primary macrophages in virus propagation and clearance. The ability of macrophages to support or clear the virus infection, as well as the host cellular immune responses, did not significantly differ between WT and α7(-/-) mice. However, cytokine and chemokine responses were generally elevated in WT mice, likely reflective of increased viral replication in the lung. In summary, these data show that a cellular factor, importin-α7, is required for enhanced virus replication in the alveolar epithelium, resulting in elevated cytokine and chemokine levels, extensive mononuclear infiltration, and thus, severe pneumonia and enhanced virulence in mice. Importance: Influenza A viruses are respiratory pathogens that may cause pneumonia in humans. Viral infection and replication in the alveoli of the respiratory tract are believed to be crucial for the development of the acute respiratory distress syndrome associated with fatal outcomes in influenza virus-infected patients. Here, we report the requirement of a cellular factor, importin-α7, for efficient virus replication in the alveolar epithelium of mice. Using complementary ex vivo imaging approaches, we show that influenza virus replication is restricted to the bronchial epithelium, followed by enhanced survival in importin-α7-deficient mice. In contrast, the presence of this gene results in enhanced virus replication in the alveoli, elevated cytokine and chemokine responses, mononuclear infiltration, alveolar destruction, and 100% lethality in wild-type mice. Taken together, our results show that importin-α7 is particularly required for virus replication in the alveolar epithelium in association with severe pneumonia and death in mice.
Assuntos
Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H1N1/fisiologia , Pulmão/patologia , Tropismo Viral , Replicação Viral , alfa Carioferinas/metabolismo , Animais , Citocinas/metabolismo , Pulmão/virologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mucosa Respiratória/virologia , Análise de Sobrevida , alfa Carioferinas/deficiênciaRESUMO
The nuclear transport of proteins is mediated by karyopherins and has been implicated to be crucial for germ cell and embryonic development. Deletion of distinct members of the karyopherin alpha family has been shown to cause male and female infertility in mice. Using a genetrap approach, we established mice deficient for KPNA2 (KPNA2 KO) and investigated the role of this protein in male germ cell development and fertility. Breeding of male KPNA2 KO mice leads to healthy offsprings in all cases albeit the absence of KPNA2 resulted in a reduction in sperm number by 60%. Analyses of the KPNA2 expression in wild-type mice revealed a strong KPNA2 presence in meiotic germ cells of all stages while a rapid decline is found in round spermatids. The high KPNA2 expression throughout all meiotic stages of sperm development suggests a possible function of KPNA2 during this phase, hence in its absence the spermatogenesis is not completely blocked. In KPNA2 KO mice, a higher portion of sperms presented with morphological abnormalities in the head and neck region, but a severe spermiogenesis defect was not found. Thus, we conclude that the function of KPNA2 in round spermatids is dispensable, as our mice do not show any signs of infertility. Our data provide evidence that KPNA2 is not crucial for male germ cell development and fertility.
Assuntos
Fertilidade , Espermatogênese , alfa Carioferinas , Animais , Feminino , Masculino , Camundongos , alfa Carioferinas/metabolismo , alfa Carioferinas/genética , alfa Carioferinas/deficiência , Fertilidade/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Meiose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contagem de Espermatozoides , Espermátides/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismoRESUMO
BACKGROUND: RNA interference (RNAi) is a powerful tool to study gene function in organisms that are not amenable to classical forward genetics. Hence, together with the ease of comprehensively identifying genes by new generation sequencing, RNAi is expanding the scope of animal species and questions that can be addressed in terms of gene function. In the case of genetic mutants, the genetic background of the strains used is known to influence the phenotype while this has not been described for RNAi experiments. RESULTS: Here we show in the red flour beetle Tribolium castaneum that RNAi against Tc-importin α1 leads to different phenotypes depending on the injected strain. We rule out off target effects and show that sequence divergence does not account for this difference. By quantitatively comparing phenotypes elicited by RNAi knockdown of four different genes we show that there is no general difference in RNAi sensitivity between these strains. Finally, we show that in case of Tc-importin α1 the difference depends on the maternal genotype. CONCLUSIONS: These results show that in RNAi experiments strain specific differences have to be considered and that a proper documentation of the injected strain is required. This is especially important for the increasing number of emerging model organisms that are being functionally investigated using RNAi. In addition, our work shows that RNAi is suitable to systematically identify the differences in the gene regulatory networks present in populations of the same species, which will allow novel insights into the evolution of animal diversity.
Assuntos
Fenótipo , Interferência de RNA , Tribolium/genética , Sequência de Aminoácidos , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Silenciamento de Genes , Injeções , Proteínas de Insetos/química , Proteínas de Insetos/deficiência , Proteínas de Insetos/genética , Masculino , Dados de Sequência Molecular , Mães , Especificidade da Espécie , Tribolium/anatomia & histologia , Tribolium/embriologia , alfa Carioferinas/química , alfa Carioferinas/deficiência , alfa Carioferinas/genéticaRESUMO
Importins mediate transport from synapse to soma and from cytoplasm to nucleus, suggesting that perturbation of importin-dependent pathways should have significant neuronal consequences. A behavioral screen on five importin α knockout lines revealed that reduced expression of importin α5 (KPNA1) in hippocampal neurons specifically decreases anxiety in mice. Re-expression of importin α5 in ventral hippocampus of knockout animals increased anxiety behaviors to wild-type levels. Hippocampal neurons lacking importin α5 reveal changes in presynaptic plasticity and modified expression of MeCP2-regulated genes, including sphingosine kinase 1 (Sphk1). Knockout of importin α5, but not importin α3 or α4, reduces MeCP2 nuclear localization in hippocampal neurons. A Sphk1 blocker reverses anxiolysis in the importin α5 knockout mouse, while pharmacological activation of sphingosine signaling has robust anxiolytic effects in wild-type animals. Thus, importin α5 influences sphingosine-sensitive anxiety pathways by regulating MeCP2 nuclear import in hippocampal neurons.
Assuntos
Ansiedade/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , alfa Carioferinas/metabolismo , Animais , Ansiolíticos/farmacologia , Comportamento Animal , Carbolinas/farmacologia , Hipocampo/patologia , Camundongos Knockout , Neurônios/metabolismo , Fenótipo , Sinapses/metabolismo , Transcrição Gênica , alfa Carioferinas/deficiênciaRESUMO
Importin α is involved in the nuclear import of proteins. It also contributes to spindle assembly and nuclear membrane formation, however, the underlying mechanisms are poorly understood. Here, we studied the function of importin α7 by gene targeting in mice and show that it is essential for early embryonic development. Embryos lacking importin α7 display a reduced ability for the first cleavage and arrest completely at the two-cell stage. We show that the zygotic genome activation is severely disturbed in these embryos. Our findings indicate that importin α7 is a new member of the small group of maternal effect genes.