Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.584
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 118(2): 457-468, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198228

RESUMO

Carotenoids perform a broad range of important functions in humans; therefore, carotenoid biofortification of maize (Zea mays L.), one of the most highly produced cereal crops worldwide, would have a global impact on human health. PLASTID TERMINAL OXIDASE (PTOX) genes play an important role in carotenoid metabolism; however, the possible function of PTOX in carotenoid biosynthesis in maize has not yet been explored. In this study, we characterized the maize PTOX locus by forward- and reverse-genetic analyses. While most higher plant species possess a single copy of the PTOX gene, maize carries two tandemly duplicated copies. Characterization of mutants revealed that disruption of either copy resulted in a carotenoid-deficient phenotype. We identified mutations in the PTOX genes as being causal of the classic maize mutant, albescent1. Remarkably, overexpression of ZmPTOX1 significantly improved the content of carotenoids, especially ß-carotene (provitamin A), which was increased by ~threefold, in maize kernels. Overall, our study shows that maize PTOX locus plays an important role in carotenoid biosynthesis in maize kernels and suggests that fine-tuning the expression of this gene could improve the nutritional value of cereal grains.


Assuntos
Oxirredutases , Zea mays , Humanos , Oxirredutases/genética , Oxirredutases/metabolismo , Zea mays/genética , Zea mays/metabolismo , Carotenoides/metabolismo , beta Caroteno/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Plastídeos/genética , Plastídeos/metabolismo
2.
Hum Mol Genet ; 32(5): 798-809, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36150025

RESUMO

Rod and cone photoreceptors in the retina mediate dim light and daylight vision, respectively. Despite their distinctive functions, rod and cone visual pigments utilize the same vitamin A-derived chromophore. To sustain vision, vitamin A precursors must be acquired in the gut, metabolized, and distributed to the eyes. Deficiencies in this pathway in inherited ocular disease states deplete cone photoreceptors from chromophore and eventually lead to cell death, whereas the more abundant rod photoreceptors are less affected. However, pathways that support cone function and survival under such conditions are largely unknown. Using biochemical, histological, and physiological approaches, we herein show that intervention with ß-carotene in STRA6-deficient mice improved chromophore supply to cone photoreceptors. Relieving the inherent negative feedback regulation of ß-carotene oxygenase-1 activity in the intestine by genetic means further bolstered cone photoreceptor functioning in the STRA6-deficient eyes. A vitamin A-rich diet, however, did not improve cone photoreceptor function in STRA6-deficiency. We provide evidence that the beneficial effect of ß-carotene on cones results from favorable serum kinetics of retinyl esters in lipoproteins. The respective alterations in lipoprotein metabolism maintained a steady supply of retinoids to the STRA6-deficient eyes, which ameliorated the competition for chromophore between rod and cone photoreceptors. Together, our study elucidates a cone photoreceptor-survival pathway and unravels an unexpected metabolic connection between the gut and the retina.


Assuntos
Células Fotorreceptoras Retinianas Cones , beta Caroteno , Animais , Camundongos , Células Fotorreceptoras Retinianas Cones/metabolismo , beta Caroteno/metabolismo , Vitamina A/metabolismo , Retina/metabolismo , Oxigenases/metabolismo , Proteínas de Membrana/metabolismo
3.
Plant J ; 115(4): 986-1003, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158657

RESUMO

The accumulation of carotenoids, such as xanthophylls, lycopene, and carotenes, is responsible for the color of carrot (Daucus carota subsp. sativus) fleshy roots. The potential role of DcLCYE, encoding a lycopene ε-cyclase associated with carrot root color, was investigated using cultivars with orange and red roots. The expression of DcLCYE in red carrot varieties was significantly lower than that in orange carrots at the mature stage. Furthermore, red carrots accumulated larger amounts of lycopene and lower levels of α-carotene. Sequence comparison and prokaryotic expression analysis revealed that amino acid differences in red carrots did not affect the cyclization function of DcLCYE. Analysis of the catalytic activity of DcLCYE revealed that it mainly formed ε-carotene, while a side activity on α-carotene and γ-carotene was also observed. Comparative analysis of the promoter region sequences indicated that differences in the promoter region may affect the transcription of DcLCYE. DcLCYE was overexpressed in the red carrot 'Benhongjinshi' under the control of the CaMV35S promoter. Lycopene in transgenic carrot roots was cyclized, resulting in the accumulation of higher levels of α-carotene and xanthophylls, while the ß-carotene content was significantly decreased. The expression levels of other genes in the carotenoid pathway were simultaneously upregulated. Knockout of DcLCYE in the orange carrot 'Kurodagosun' by CRISPR/Cas9 technology resulted in a decrease in the α-carotene and xanthophyll contents. The relative expression levels of DcPSY1, DcPSY2, and DcCHXE were sharply increased in DcLCYE knockout mutants. The results of this study provide insights into the function of DcLCYE in carrots, which could serve as a basis for creating colorful carrot germplasms.


Assuntos
Daucus carota , beta Caroteno , beta Caroteno/metabolismo , Daucus carota/genética , Licopeno/metabolismo , Carotenoides/metabolismo , Xantofilas/metabolismo
4.
Plant J ; 113(5): 986-1003, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36602437

RESUMO

The enzyme DWARF27 (D27) catalyzes the reversible isomerization of all-trans- into 9-cis-ß-carotene, initiating strigolactone (SL) biosynthesis. Genomes of higher plants encode two D27-homologs, D27-like1 and -like2, with unknown functions. Here, we investigated the enzymatic activity and biological function of the Arabidopsis D27-like1. In vitro enzymatic assays and expression in Synechocystis sp. PCC6803 revealed an unreported 13-cis/15-cis/9-cis- and a 9-cis/all-trans-ß-carotene isomerization. Although disruption of AtD27-like1 did not cause SL deficiency phenotypes, overexpression of AtD27-like1 in the d27 mutant restored the more-branching phenotype, indicating a contribution of AtD27-like1 to SL biosynthesis. Accordingly, generated d27 d27like1 double mutants showed a more pronounced branching phenotype compared to d27. The contribution of AtD27-like1 to SL biosynthesis is likely a result of its formation of 9-cis-ß-carotene that was present at higher levels in AtD27-like1 overexpressing lines. By contrast, AtD27-like1 expression correlated negatively with the content of 9-cis-violaxanthin, a precursor of ABA, in shoots. Consistently, ABA levels were higher in shoots and also in dry seeds of the d27like1 and d27 d27like1 mutants. Transgenic lines expressing GUS driven by the AtD27LIKE1 promoter and transcript analysis of hormone-treated Arabidopsis seedlings revealed that AtD27LIKE1 is expressed in different tissues and affects ABA and auxin. Taken together, our work reports a cis/cis-ß-carotene isomerase that affects the content of both cis-carotenoid-derived plant hormones, ABA and SLs.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , beta Caroteno/metabolismo , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , Regulação da Expressão Gênica de Plantas , Isomerases/genética , Isomerases/metabolismo
5.
Am J Physiol Endocrinol Metab ; 327(3): E258-E270, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39017681

RESUMO

Perinatal nutrition exerts a profound influence on adult metabolic health. This study aimed to investigate whether increased maternal vitamin A (VA) supply can lead to beneficial metabolic phenotypes in the offspring. The researchers utilized mice deficient in the intestine-specific homeobox (ISX) transcription factor, which exhibits increased intestinal VA retinoid production from dietary ß-carotene (BC). ISX-deficient dams were fed a VA-sufficient or a BC-enriched diet during the last week of gestation and the whole lactation period. Total retinol levels in milk and weanling livers were 2- to 2.5-fold higher in the offspring of BC-fed dams (BC offspring), indicating increased VA supplies during late gestation and lactation. The corresponding VA-sufficient and BC offspring (males and females) were compared at weaning and adulthood after being fed either a standard or high-fat diet (HFD) with regular VA content for 13 weeks from weaning. HFD-induced increases in adiposity metrics, such as fat depot mass and adipocyte diameter, were more pronounced in males than females and were attenuated or suppressed in the BC offspring. Notably, the BC offspring were protected from HFD-induced increases in circulating triacylglycerol levels and hepatic steatosis. These protective effects were associated with reduced food efficiency, enhanced capacity for thermogenesis and mitochondrial oxidative metabolism in adipose tissues, and increased adipocyte hyperplasia rather than hypertrophy in the BC offspring. In conclusion, maternal VA nutrition influenced by genetics may confer metabolic benefits to the offspring, with mild increases in late gestation and lactation protecting against obesity and metabolic dysregulation in adulthood.NEW & NOTEWORTHY A genetic mouse model, deficient in intestine-specific homeobox (ISX) transcription factor, is used to show that a mildly increased maternal vitamin A supply from ß-carotene feeding during late gestation and lactation programs energy and lipid metabolism in tissues and protects the offspring from diet-induced hypertrophic obesity and hepatic steatosis. This knowledge may have implications for human populations where polymorphisms in ISX and ISX target genes involved in vitamin A homeostasis are prevalent.


Assuntos
Dieta Hiperlipídica , Homeostase , Obesidade , Vitamina A , Animais , Feminino , Camundongos , Vitamina A/metabolismo , Masculino , Gravidez , Obesidade/metabolismo , Obesidade/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , beta Caroteno/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Camundongos Endogâmicos C57BL , Lactação , Camundongos Knockout , Herança Materna , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Dieta , Fígado/metabolismo , Adiposidade/genética
6.
Planta ; 260(4): 80, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192071

RESUMO

MAIN CONCLUSION: Mutation at A126 in lycopene-ß-cyclase of Crocus (CstLcyB2a) sterically hinders its binding of δ-carotene without affecting lycopene binding, thereby diverting metabolic flux towards ß-carotene and apocarotenoid biosynthesis. Crocus sativus, commonly known as saffron, has emerged as an important crop for research because of its ability to synthesize unique apocarotenoids such as crocin, picrocrocin and safranal. Metabolic engineering of the carotenoid pathway can prove a beneficial strategy for enhancing the quality of saffron and making it resilient to changing climatic conditions. Here, we demonstrate that introducing a novel mutation at A126 in stigma-specific lycopene-ß-cyclase of Crocus (CstLcyB2a) sterically hinders its binding of δ-carotene, but does not affect lycopene binding, thereby diverting metabolic flux towards ß-carotene formation. Thus, A126L-CstLcyB2a expression in lycopene-accumulating bacterial strains resulted in enhanced production of ß-carotene. Transient expression of A126L-CstLcyB2a in C. sativus stigmas enhanced biosynthesis of crocin. Its stable expression in Nicotiana tabacum enhanced ß-branch carotenoids and phyto-hormones such as abscisic acid (ABA) and gibberellic acids (GA's). N. tabacum transgenic lines showed better growth performance and photosynthetic parameters including maximum quantum efficiency (Fv/Fm) and light-saturated capacity of linear electron transport. Exogenous application of hormones and their inhibitors demonstrated that a higher ratio of GA4/ABA has positive effects on biomass of wild-type and transgenic plants. Thus, these findings provide a platform for the development of new-generation crops with improved productivity, quality and stress tolerance.


Assuntos
Biomassa , Carotenoides , Crocus , Mutação , Estresse Fisiológico , Crocus/genética , Crocus/fisiologia , Crocus/enzimologia , Carotenoides/metabolismo , Estresse Fisiológico/genética , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , Plantas Geneticamente Modificadas , beta Caroteno/metabolismo , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Cicloexenos/metabolismo , Terpenos/metabolismo , Licopeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Monoterpenos Cicloexânicos , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Nicotiana/genética , Nicotiana/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Glucosídeos
7.
Plant Physiol ; 191(4): 2414-2426, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611254

RESUMO

The eyespot apparatus is an organelle that forms carotenoid-rich globules in diverse flagellated microalgae and functions in phototaxis. The euglenophytes have structurally and functionally distinct eyespot apparatuses from chlorophytes. ß-Carotene is the most abundant pigment detected in chlorophytes' eyespots, while xanthophylls such as zeaxanthin and diadinoxanthin have been suggested to function in euglenophytes' eyespots. Here, we investigated the association between carotenoid composition and eyespot formation via pathway-scale mutagenesis using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing in the euglenophyte Euglena gracilis. Lycopene cyclase (lcy) mutants exhibited sole lycopene accumulation, defective red eyespots, and phototactic insensitivity. Conversely, ß-carotene hydroxylase (cytochrome P450 97h1, cyp97h1) mutants accumulated ß-carotene and its hydroxylated products ß-cryptoxanthin and zeaxanthin and formed phototactic eyespot apparatuses, while cyp97h1 cyp97f2 double mutants were deficient in ß-carotene hydroxylation and mostly lacked functional eyespots. Thus, zeaxanthin is required for the stable formation of functional eyespots in E. gracilis, highlighting evolutionary differences between euglenophytes and chlorophytes in the metabolic regulation of photoreactive organelle formation.


Assuntos
Euglena gracilis , beta Caroteno , Zeaxantinas/metabolismo , beta Caroteno/metabolismo , Euglena gracilis/genética , Fototaxia , Carotenoides/metabolismo , Organelas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
8.
Plant Physiol ; 192(3): 2067-2080, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36891812

RESUMO

ETHYLENE-INSENSITIVE 3/ETHYLENE-INSENSITIVE 3-LIKEs (EIN3/EILs) are important ethylene response factors during fruit ripening. Here, we discovered that EIL2 controls carotenoid metabolism and ascorbic acid (AsA) biosynthesis in tomato (Solanum lycopersicum). In contrast to the red fruits presented in the wild type (WT) 45 d after pollination, the fruits of CRISPR/Cas9 eil2 mutants and SlEIL2 RNA interference lines (ERIs) showed yellow or orange fruits. Correlation analysis of transcriptome and metabolome data for the ERI and WT ripe fruits revealed that SlEIL2 is involved in ß-carotene and AsA accumulation. ETHYLENE RESPONSE FACTORs (ERFs) are the typical components downstream of EIN3 in the ethylene response pathway. Through a comprehensive screening of ERF family members, we determined that SlEIL2 directly regulates the expression of 4 SlERFs. Two of these, SlERF.H30 and SlERF.G6, encode proteins that participate in the regulation of LYCOPENE-ß-CYCLASE 2 (SlLCYB2), encoding an enzyme that mediates the conversion of lycopene to carotene in fruits. In addition, SlEIL2 transcriptionally repressed L-GALACTOSE 1-PHOSPHATE PHOSPHATASE 3 (SlGPP3) and MYO-INOSITOL OXYGENASE 1 (SlMIOX1) expression, which resulted in a 1.62-fold increase of AsA via both the L-galactose and myoinositol pathways. Overall, we demonstrated that SlEIL2 functions in controlling ß-carotene and AsA levels, providing a potential strategy for genetic engineering to improve the nutritional value and quality of tomato fruit.


Assuntos
Solanum lycopersicum , beta Caroteno , beta Caroteno/metabolismo , Licopeno/metabolismo , Solanum lycopersicum/genética , Ácido Ascórbico/metabolismo , Galactose/metabolismo , Etilenos/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Plant Physiol ; 192(2): 1289-1306, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36715630

RESUMO

Carotenoids and apocarotenoids function as pigments and flavor volatiles in plants that enhance consumer appeal and offer health benefits. Tomato (Solanum lycopersicum.) fruit, especially those of wild species, exhibit a high degree of natural variation in carotenoid and apocarotenoid contents. Using positional cloning and an introgression line (IL) of Solanum habrochaites "LA1777', IL8A, we identified carotenoid cleavage dioxygenase 4 (CCD4) as the factor responsible for controlling the dark orange fruit color. CCD4b expression in ripe fruit of IL8A plants was ∼8,000 times greater than that in the wild type, presumably due to 5' cis-regulatory changes. The ShCCD4b-GFP fusion protein localized in the plastid. Phytoene, ζ-carotene, and neurosporene levels increased in ShCCD4b-overexpressing ripe fruit, whereas trans-lycopene, ß-carotene, and lutein levels were reduced, suggestive of feedback regulation in the carotenoid pathway by an unknown apocarotenoid. Solid-phase microextraction-gas chromatography-mass spectrometry analysis showed increased levels of geranylacetone and ß-ionone in ShCCD4b-overexpressing ripe fruit coupled with a ß-cyclocitral deficiency. In carotenoid-accumulating Escherichia coli strains, ShCCD4b cleaved both ζ-carotene and ß-carotene at the C9-C10 (C9'-C10') positions to produce geranylacetone and ß-ionone, respectively. Exogenous ß-cyclocitral decreased carotenoid synthesis in the ripening fruit of tomato and pepper (Capsicum annuum), suggesting feedback inhibition in the pathway. Our findings will be helpful for enhancing the aesthetic and nutritional value of tomato and for understanding the complex regulatory mechanisms of carotenoid and apocarotenoid biogenesis.


Assuntos
Dioxigenases , Solanum lycopersicum , Solanum lycopersicum/genética , beta Caroteno/metabolismo , zeta Caroteno/análise , zeta Caroteno/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Carotenoides/metabolismo , Frutas/metabolismo
10.
Plant Physiol ; 193(1): 643-660, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37233026

RESUMO

Chromoplasts are plant organelles with a unique ability to sequester and store massive carotenoids. Chromoplasts have been hypothesized to enable high levels of carotenoid accumulation due to enhanced sequestration ability or sequestration substructure formation. However, the regulators that control the substructure component accumulation and substructure formation in chromoplasts remain unknown. In melon (Cucumis melo) fruit, ß-carotene accumulation in chromoplasts is governed by ORANGE (OR), a key regulator for carotenoid accumulation in chromoplasts. By using comparative proteomic analysis of a high ß-carotene melon variety and its isogenic line low-ß mutant that is defective in CmOr with impaired chromoplast formation, we identified carotenoid sequestration protein FIBRILLIN1 (CmFBN1) as differentially expressed. CmFBN1 expresses highly in melon fruit tissue. Overexpression of CmFBN1 in transgenic Arabidopsis (Arabidopsis thaliana) containing ORHis that genetically mimics CmOr significantly enhances carotenoid accumulation, demonstrating its involvement in CmOR-induced carotenoid accumulation. Both in vitro and in vivo evidence showed that CmOR physically interacts with CmFBN1. Such an interaction occurs in plastoglobules and results in promoting CmFBN1 accumulation. CmOR greatly stabilizes CmFBN1, which stimulates plastoglobule proliferation and subsequently carotenoid accumulation in chromoplasts. Our findings show that CmOR directly regulates CmFBN1 protein levels and suggest a fundamental role of CmFBN1 in facilitating plastoglobule proliferation for carotenoid sequestration. This study also reveals an important genetic tool to further enhance OR-induced carotenoid accumulation in chromoplasts in crops.


Assuntos
Arabidopsis , Cucurbitaceae , beta Caroteno/metabolismo , Cucurbitaceae/metabolismo , Fibrilinas/metabolismo , Proteômica , Carotenoides/metabolismo , Plastídeos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Frutas/genética
11.
Photosynth Res ; 159(1): 79-91, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38363474

RESUMO

Cyanobacterial photosynthetic apparatus efficiently capture sunlight, and the energy is subsequently transferred to photosystem I (PSI) and II (PSII), to produce electrochemical potentials. PSII is a unique membrane protein complex that photo-catalyzes oxidation of water and majorly contains photosynthetic pigments of chlorophyll a and carotenoids. In the present study, the ultrafast energy transfer and charge separation dynamics of PSII from a thermophilic cyanobacterium Thermosynechococcus vulcanus were reinvestigated by femtosecond pump-probe spectroscopic measurements under low temperature and weak intensity excitation condition. The results imply the two possible models of the energy transfers and subsequent charge separation in PSII. One is the previously suggested "transfer-to-trapped limit" model. Another model suggests that the energy transfers from core CP43 and CP47 antennas to the primary electron donor ChlD1 with time-constants of 0.71 ps and 3.28 ps at 140 K (0.17 and 1.33 ps at 296 K), respectively and that the pheophytin anion (PheoD1-) is generated with the time-constant of 43.0 ps at 140 K (14.8 ps at 296 K) upon excitation into the Qy band of chlorophyll a at 670 nm. The secondary electron transfer to quinone QA: PheoD1-QA → PheoD1QA- is observed with the time-constant of 650 ps only at 296 K. On the other hand, an inefficient ß-carotene → chlorophyll a energy transfer (33%) occurred after excitation to the S2 state of ß-carotene at 500 nm. Instead, the carotenoid triplet state appeared in an ultrafast timescale after excitation at 500 nm.


Assuntos
Cianobactérias , beta Caroteno , Clorofila A , beta Caroteno/metabolismo , Análise Espectral , Transporte de Elétrons , Cianobactérias/metabolismo , Carotenoides/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Thermosynechococcus
12.
J Exp Bot ; 75(4): 1148-1158, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38006582

RESUMO

Strigolactones and abscisic acid (ABA) are apocarotenoid-derived plant hormones. Their biosynthesis starts with the conversion of trans-carotenes into cis forms, which serve as direct precursors. Iron-containing DWARF27 isomerases were shown to catalyse or contribute to the trans/cis conversions of these precursor molecules. D27 converts trans-ß-carotene into 9-cis-ß-carotene, which is the first committed step in strigolactone biosynthesis. Recent studies found that its paralogue, D27-LIKE1, also catalyses this conversion. A crucial step in ABA biosynthesis is the oxidative cleavage of 9-cis-violaxanthin and/or 9-cis-neoxanthin, which are formed from their trans isomers by unknown isomerases. Several lines of evidence point out that D27-like proteins directly or indirectly contribute to 9-cis-violaxanthin conversion, and eventually ABA biosynthesis. Apparently, the diversity of D27-like enzymatic activity is essential for the optimization of cis/trans ratios, and hence act to maintain apocarotenoid precursor pools. In this review, we discuss the functional divergence and redundancy of D27 paralogues and their potential direct contribution to ABA precursor biosynthesis. We provide updates on their gene expression regulation and alleged Fe-S cluster binding feature. Finally, we conclude that the functional divergence of these paralogues is not fully understood and we provide an outlook on potential directions in research.


Assuntos
Ácido Abscísico , Compostos Heterocíclicos com 3 Anéis , Lactonas , beta Caroteno , Ácido Abscísico/metabolismo , beta Caroteno/metabolismo , Proteínas de Plantas/metabolismo , Carotenoides/metabolismo , Isomerases/metabolismo , Xantofilas
13.
Crit Rev Biotechnol ; 44(3): 337-351, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36779332

RESUMO

ß-Carotene is one kind of the most important carotenoids. The major functions of ß-carotene include the antioxidant and anti-cardiovascular properties, which make it a growing market. Recently, the use of metabolic engineering to construct microbial cell factories to synthesize ß-carotene has become the latest model for its industrial production. Among these cell factories, yeasts including Saccharomyces cerevisiae and Yarrowia lipolytica have attracted the most attention because of the: security, mature genetic manipulation tools, high flux toward carotenoids using the native mevalonate pathway and robustness for large-scale fermentation. In this review, the latest strategies for ß-carotene biosynthesis, including protein engineering, promoters engineering and morphological engineering are summarized in detail. Finally, perspectives for future engineering approaches are proposed to improve ß-carotene production.


Assuntos
Engenharia Metabólica , Yarrowia , beta Caroteno/genética , beta Caroteno/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Saccharomyces cerevisiae/genética , Regiões Promotoras Genéticas
14.
Arch Microbiol ; 206(4): 189, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519760

RESUMO

Microbial production of carotenoids has gained significant interest for its cost-effectiveness and sustainable nature. This study focuses on 47 red-pigmented yeasts isolated from sediments and plant parts of 13 species of mangrove trees. The relative abundance and distribution of these yeasts varied with plant species and plant parts. The highest number of red yeasts was associated with the mangrove plant Avicennia officinalis (32%). Notably, the leaves harbored the highest percentage (45%) of carotenogenic yeasts, and definite compartmentalization of these yeast species was noticed in mangrove plant parts. All the isolates were molecularly identified and they belonged to the genera of Rhodotorula, Rhodosporidiobolus, and Cryptococcus. The diversity of the pigmented yeasts isolated from A. officinalis was found to be the greatest. Among these strains, Rhodotorula mucilaginosa PV 8 was identified as the most potent producer of carotenoid pigment. Under optimized conditions of physical parameters - 28 °C, pH 5, and 15% salinity led to biomass production of 9.2 ± 0.12 g/L DCW and a pigment yield of 194.78 µg/g. The pigment produced by PV 8 was identified as ß-carotene by thin layer chromatography (TLC) and Fourier transform infrared spectroscopy (FT-IR). This ß-carotene demonstrated strong antioxidant activity. Moreover, the carotenoid displayed promising antibacterial activity against multidrug-resistant organisms, including Aeromonas sp. and Vibrio sp. In vitro studies revealed the probiotic traits of PV 8. The cytotoxicity of R. mucilaginosa PV 8 was assessed in the invertebrate model Artemia salina and the survival rate showed that it was non-toxic. Furthermore, the ß-carotene from PV 8 demonstrated the ability to transfer its vibrant color to various food products, maintaining color stability even under varied conditions. This research underscores the potential of R. mucilaginosa PV 8, as a versatile and valuable resource for the production of carotenoids.


Assuntos
Ecossistema , Rhodotorula , beta Caroteno , beta Caroteno/análise , Bioprospecção , Espectroscopia de Infravermelho com Transformada de Fourier , Leveduras , Carotenoides/análise
15.
Arch Microbiol ; 206(6): 245, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702537

RESUMO

Production of carotenoids by yeast fermentation is an advantaged technology due to its easy scaling and safety. Nevertheless, carotenoid production needs an economic culture medium and other efficient yeast stains. The study aims to isolate and identify a yeast strain capable of producing carotenoids using a cost-effective substrate. A new strain was identified as Rhodotorula toruloides L/24-26-1, which can produce carotenoids at different pretreated and unpretreated sugarcane molasses concentrations (40 and 80 g/L). The highest biomass concentration (18.6 ± 0.6 g/L) was reached in the culture using 80 g/L of hydrolyzed molasses. On the other hand, the carotenoid accumulation reached the maximum value using pretreated molasses at 40 g/L (715.4 ± 15.1 µg/g d.w). In this case, the ß-carotene was 1.5 times higher than that on the control medium. The yeast growth in molasses was not correlated with carotenoid production. The most outstanding production of The DPPH, ABTS, and FRAP tests demonstrated the antioxidant activity of the obtained carotenogenic extracts. This research demonstrated the R. toruloides L/24-26-1 strain biotechnological potential for carotenoid compounds. The yeast produces carotenoids with antioxidant activity in an inexpensive medium, such as sulfuric acid pretreated and unpretreated molasses.


Assuntos
Fermentação , Melaço , Rhodotorula , Saccharum , beta Caroteno , Rhodotorula/metabolismo , Rhodotorula/genética , Rhodotorula/crescimento & desenvolvimento , Rhodotorula/isolamento & purificação , Rhodotorula/classificação , Saccharum/metabolismo , beta Caroteno/metabolismo , beta Caroteno/biossíntese , Carotenoides/metabolismo , Antioxidantes/metabolismo , Biomassa , Meios de Cultura/química , Filogenia
16.
Langmuir ; 40(22): 11610-11625, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38760180

RESUMO

Low solubility and chemical instability are the main problems with insoluble bioactives. Lignin, with its exceptional biological properties and amphiphilicity, holds promise as a delivery system material. In this study, glycerol esters were incorporated into alkali lignin (AL) through ether and ester bonds, resulting in the successful synthesis of three hydrophobically modified alkali lignins (AL-OA, AL-OGL, and AL-SAN-OGL). Subsequently, lignin composite nanoparticles (LNPs@BC) encapsulating ß-carotene were prepared using antisolvent and sonication techniques. The encapsulation rates were determined to be 37.69 ± 2.21%, 84.01 ± 5.55%, 83.82 ± 5.23%, and 83.11 ± 5.85% for LNP@BC-1, LNP@BC-2, LNP@BC-3, and LNP@BC-4, respectively, with AL, AL-OA, AL-OGL, and AL-SAN-OGL serving as the wall materials under optimized preparation conditions. The antioxidant properties and UV-absorbing capacity of the four lignins were characterized, demonstrating their efficacy in enhancing the oxygen and photostability of ß-carotene. Following 6 h of UV irradiation, LNP@BC-4 exhibited a retention rate of 83.03 ± 2.85% for ß-carotene, while storage under light-protected conditions at 25 °C for 7 days retained 73.33 ± 7.62% of ß-carotene. Furthermore, the encapsulated ß-carotene demonstrated enhanced thermal and storage stability. In vitro release experiments revealed superior stability of LNPs@BC in simulated gastric fluid (SGF), with ß-carotene retention exceeding 77% in both LNP@BC-3 and LNP@BC-4. LNP@BC-4 exhibited the highest bioaccessibility in simulated intestinal fluid (SIF) at 46.96 ± 0.80%, that LNP@BC-1 only achieved 10.87 ± 0.90%. The enzymatic responsiveness of AL-OGL and AL-SAN-OGL was confirmed. Moreover, LNPs@BC exhibited no cytotoxicity toward L929 cells and demonstrated excellent hemocompatibility. In summary, this study introduces a novel enzyme-responsive modified lignin that has promising applications in the fields of food, biomedicine, and animal feed.


Assuntos
Lignina , Lipase , Nanopartículas , beta Caroteno , Lignina/química , Nanopartículas/química , beta Caroteno/química , Lipase/química , Lipase/metabolismo , Solubilidade , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Animais , Camundongos , Portadores de Fármacos/química
17.
Biomarkers ; 29(3): 154-160, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38506499

RESUMO

CONTEXT: Exocyclic DNA adducts have been shown to be potential biomarkers of cancer risk related to oxidative stress and exposure to aldehydes in smokers. In fact, aldehydes potentially arise from tobacco combustion directly and endogenously through lipid peroxidation. OBJECTIVE: This study aims to investigate the relationship between a profile of nine aldehydes-induced DNA adducts and antioxidant activities, in order to evaluate new biomarkers of systemic exposure to aldehydes. METHODS: Using our previously published UPLC-MS/MS method, adducts levels were quantified in the blood DNA of 34 active smokers. The levels of antioxidant vitamins (A, C and E), coenzyme Q10, ß-carotene, superoxide dismutase (SOD) and autoantibodies against oxidized low-density lipoprotein were measured. RESULTS: Adducts induced by tobacco smoking-related aldehydes were quantified at levels reflecting an oxidative production from lipid peroxidation. A significant correlation between SOD and crotonaldehyde-induced adducts (p = 0.0251) was also observed. ß-Carotene was negatively correlated with the adducts of formaldehyde (p = 0.0351) and acetaldehyde (p = 0.0413). Vitamin C tended to inversely correlate with acetaldehyde-induced adducts (p = 0.0584). CONCLUSION: These results are promising, and the study is now being conducted on a larger cohort with the aim of evaluating the impact of smoking cessation programs on the evolution of adducts profile and antioxidants activities.


Assuntos
Adutos de DNA , Fumantes , Humanos , Monitoramento Biológico , Antioxidantes , beta Caroteno , Cromatografia Líquida , Espectrometria de Massas em Tandem , Aldeídos , Estresse Oxidativo , Biomarcadores , Acetaldeído , Superóxido Dismutase
18.
Br J Nutr ; 131(6): 1041-1052, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37926900

RESUMO

Carotenoids are important bioactive substances in breast milk, the profile of which is seldom studied. This study aimed to explore the profile of carotenoids in breast milk and maternal/cord plasma of healthy mother-neonate pairs in Shanghai, China, and their correlation with dietary intake. Maternal blood, umbilical cord blood and breast milk samples from five lactation stages (colostrum, transitional milk and early-, mid- and late-term mature milk) were collected. Carotenoid levels were analysed by HPLC. Carotenoid levels in breast milk changed as lactation progressed (P < 0·001). ß-Carotene was the primary carotenoid in colostrum. Lutein accounted for approximately 50 % of total carotenoids in transitional milk, mature milk and cord blood. Positive correlations were observed between five carotenoids in umbilical cord blood and maternal blood (P all < 0·001). ß-Carotene levels were also correlated between maternal plasma and three stages of breast milk (r = 0·605, P < 0·001; r = 0·456, P = 0·011, r = 0·446; P = 0·013, respectively). Dietary carotenoid intakes of lactating mothers also differed across lactation stages, although no correlation with breast milk concentrations was found. These findings suggest the importance of exploring the transport mechanism of carotenoids between mothers and infants and help guide the development of formulas for Chinese infants as well as the nutritional diets of lactating mothers.


Assuntos
Carotenoides , Leite Humano , Feminino , Lactente , Recém-Nascido , Humanos , Leite Humano/química , Sangue Fetal/química , beta Caroteno , Lactação , Estudos Longitudinais , China , Ingestão de Alimentos
19.
Br J Nutr ; 132(1): 50-66, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639131

RESUMO

Carotenoids are generally associated with health-beneficial effects; however, their intake patterns related to the metabolic syndrome (MetS) and its components remain controversial. This cross-sectional study investigated associations between dietary intakes of individual carotenoids, fruits and vegetables, and the MetS and its components. Dietary intakes of 1346 participants of the Observation des Risques et de la Santé Cardio-Vasculaire au Luxembourg (ORISCAV-LUX-2) study were investigated by a 174-item FFQ, and carotenoid intake was determined by linking findings using mainly the USDA food databases. Components of MetS and complementary variables, including anthropometric (BMI, waist circumferences and waist:hip ratio) and biological parameters (TAG, HDL-cholesterol, fasting blood glucose and blood pressure), were measured. Logistic (for MetS) and linear multivariable regression models (including assessing MetS as scores) adjusted for various confounders were created. α-and ß-Carotene, as well as lutein + zeaxanthin, were inversely associated with MetS (also when it was measured on a continuous scale), reducing the odds for MetS by up to 48 %. However, lycopene, phytoene and phytofluene were rather positively associated with MetS scores and its components, though these adverse effects disappeared, at least for lycopene, when controlling for intakes of tomato-based convenience foods, in line with indicating a rather unhealthy/westernised diet. All these associations remained significant when including fruits and vegetables as confounders, suggesting that carotenoids were related to MetS independently from effects within fruits and vegetables. Thus, a high intake of carotenoids was bidirectionally associated with MetS, its severity, risk and its components, depending on the type of carotenoid. Future investigations are warranted to explore the inverse role that tomato-based carotenoids appear to suggest in relation to the MetS.


Assuntos
Carotenoides , Dieta , Frutas , Luteína , Licopeno , Síndrome Metabólica , Verduras , Zeaxantinas , Humanos , Carotenoides/administração & dosagem , Masculino , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Licopeno/administração & dosagem , Luteína/administração & dosagem , Luteína/sangue , Zeaxantinas/administração & dosagem , Zeaxantinas/sangue , Luxemburgo , beta Caroteno/administração & dosagem , Idoso , Adulto , Fatores de Risco , Circunferência da Cintura , Índice de Massa Corporal
20.
BMC Gastroenterol ; 24(1): 51, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287248

RESUMO

BACKGROUND: Gastric cancer is characterized by high invasiveness, heterogeneity, and late diagnosis, leading to high incidence and mortality rates. It is a significant public health concern globally. Early prevention is crucial in reducing the occurrence of gastric cancer, and dietary prevention, particularly focusing on carotenoids, has been considered a convenient and effective approach. However, the association between carotenoid intake and gastric cancer incidence remains controversial. METHODS: A systematic search was conducted in PubMed, Ovid Embase, Web of Science, and Cochrane databases from inception to January 5, 2023. Two reviewers independently screened search results, extracted relevant data, and evaluated study quality. Statistical analysis was performed using the "metan" command in STATA 16 software. Random-effects or fixed-effects models were chosen based on the magnitude of heterogeneity among studies. RESULTS: This study included a total of 35 publications, consisting of 23 case-control studies and 12 cohort studies. Meta-analysis of case-control studies showed that alpha-carotene (OR = 0.71, 95% CI: 0.55-0.92), beta-carotene (OR = 0.62, 95% CI: 0.53-0.72), and lutein (OR = 0.82, 95% CI: 0.69-0.97) significantly reduced the risk of gastric cancer, while beta-cryptoxanthin (OR = 0.88, 95% CI: 0.75-1.04) and lycopene (OR = 0.86, 95% CI: 0.73-1.00) showed no significant correlation. Meta-analysis of cohort studies indicated no significant associations between any of the five carotenoids and gastric cancer incidence (alpha-carotene: RR = 0.81, 95% CI: 0.54-1.23; beta-carotene: RR = 0.86, 95% CI: 0.64-1.16; beta-cryptoxanthin: RR = 0.86, 95% CI: 0.64-1.16; lutein: RR = 0.94, 95% CI: 0.69-1.29; lycopene: RR = 0.89, 95% CI: 0.69-1.14). CONCLUSIONS: The relationship between carotenoids and gastric cancer incidence may vary depending on the type of study conducted. Considering that evidence from cohort studies is generally considered stronger than evidence from case-control studies, and high-quality randomized controlled trials show no significant association between carotenoids and gastric cancer incidence, current evidence does not support the supplementation of carotenoids for gastric cancer prevention. Further targeted research is needed to explore the association between the two.


Assuntos
Neoplasias Gástricas , beta Caroteno , Humanos , beta Caroteno/uso terapêutico , Licopeno , Luteína/uso terapêutico , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/prevenção & controle , beta-Criptoxantina , Fatores de Risco , Carotenoides/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA