Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 540
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 19(7): e1010834, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418503

RESUMO

Sulfur is an indispensable element for bacterial proliferation. Prior studies demonstrated that the human pathogen Staphylococcus aureus utilizes glutathione (GSH) as a source of nutrient sulfur; however, mechanisms of GSH acquisition are not defined. Here, we identify a five-gene locus comprising a putative ABC-transporter and predicted γ-glutamyl transpeptidase (ggt) that promotes S. aureus proliferation in medium supplemented with either reduced or oxidized GSH (GSSG) as the sole source of nutrient sulfur. Based on these phenotypes, we name this transporter operon the glutathione import system (gisABCD). Ggt is encoded within the gisBCD operon, and we show that the enzyme is capable of liberating glutamate using either GSH or GSSG as substrates, demonstrating it is a bona fide γ-glutamyl transpeptidase. We also determine that Ggt is expressed in the cytoplasm, representing only the second example of cytoplasmic Ggt localization, the other being Neisseria meningitidis. Bioinformatic analyses revealed that Staphylococcus species closely related to S. aureus encode GisABCD-Ggt homologs. However, homologous systems were not detected in Staphylococcus epidermidis. Consequently, we establish that GisABCD-Ggt provides a competitive advantage for S. aureus over S. epidermidis in a GSH- and GSSG-dependent manner. Overall, this study describes the discovery of a nutrient sulfur acquisition system in S. aureus that targets GSSG in addition to GSH and promotes competition against other staphylococci commonly associated with the human microbiota.


Assuntos
Staphylococcus aureus , gama-Glutamiltransferase , Humanos , Staphylococcus aureus/genética , gama-Glutamiltransferase/genética , Dissulfeto de Glutationa , Glutationa/genética , Enxofre
2.
Hum Genomics ; 18(1): 71, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915066

RESUMO

OBJECTIVE: To investigate the association between liver enzymes and ovarian cancer (OC), and to validate their potential as biomarkers and their mechanisms in OC. Methods Genome-wide association studies for OC and levels of enzymes such as Alkaline phosphatase (ALP), Aspartate aminotransferase (AST), Alanine aminotransferase, and gamma-glutamyltransferase were analyzed. Univariate and multivariate Mendelian randomization (MR), complemented by the Steiger test, identified enzymes with a potential causal relationship to OC. Single-cell transcriptomics from the GSE130000 dataset pinpointed pivotal cellular clusters, enabling further examination of enzyme-encoding gene expression. Transcription factors (TFs) governing these genes were predicted to construct TF-mRNA networks. Additionally, liver enzyme levels were retrospectively analyzed in healthy individuals and OC patients, alongside the evaluation of correlations with cancer antigen 125 (CA125) and Human Epididymis Protein 4 (HE4). RESULTS: A total of 283 single nucleotide polymorphisms (SNPs) and 209 SNPs related to ALP and AST, respectively. Using the inverse-variance weighted method, univariate MR (UVMR) analysis revealed that ALP (P = 0.050, OR = 0.938) and AST (P = 0.017, OR = 0.906) were inversely associated with OC risk, suggesting their roles as protective factors. Multivariate MR (MVMR) confirmed the causal effect of ALP (P = 0.005, OR = 0.938) on OC without reverse causality. Key cellular clusters including T cells, ovarian cells, endothelial cells, macrophages, cancer-associated fibroblasts (CAFs), and epithelial cells were identified, with epithelial cells showing high expression of genes encoding AST and ALP. Notably, TFs such as TCE4 were implicated in the regulation of GOT2 and ALPL genes. OC patient samples exhibited decreased ALP levels in both blood and tumor tissues, with a negative correlation between ALP and CA125 levels observed. CONCLUSION: This study has established a causal link between AST and ALP with OC, identifying them as protective factors. The increased expression of the genes encoding these enzymes in epithelial cells provides a theoretical basis for developing novel disease markers and targeted therapies for OC.


Assuntos
Fosfatase Alcalina , Biomarcadores Tumorais , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Neoplasias Ovarianas , Polimorfismo de Nucleotídeo Único , Análise de Célula Única , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Polimorfismo de Nucleotídeo Único/genética , Análise de Célula Única/métodos , Fosfatase Alcalina/genética , Fosfatase Alcalina/sangue , Biomarcadores Tumorais/genética , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos/genética , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos/metabolismo , Aspartato Aminotransferases/genética , Aspartato Aminotransferases/sangue , Fígado/patologia , Fígado/metabolismo , Alanina Transaminase/sangue , Alanina Transaminase/genética , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/sangue , Antígeno Ca-125/genética , Regulação Neoplásica da Expressão Gênica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Membrana/genética , Pessoa de Meia-Idade
3.
Metab Eng ; 85: 26-34, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38802041

RESUMO

Integration of novel compounds into biological processes holds significant potential for modifying or expanding existing cellular functions. However, the cellular uptake of these compounds is often hindered by selectively permeable membranes. We present a novel bacterial transport system that has been rationally designed to address this challenge. Our approach utilizes a highly promiscuous sulfonate membrane transporter, which allows the passage of cargo molecules attached as amides to a sulfobutanoate transport vector molecule into the cytoplasm of the cell. These cargoes can then be unloaded from the sulfobutanoyl amides using an engineered variant of the enzyme γ-glutamyl transferase, which hydrolyzes the amide bond and releases the cargo molecule within the cell. Here, we provide evidence for the broad substrate specificity of both components of the system by evaluating a panel of structurally diverse sulfobutanoyl amides. Furthermore, we successfully implement the synthetic uptake system in vivo and showcase its functionality by importing an impermeant non-canonical amino acid.


Assuntos
Escherichia coli , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Engenharia Metabólica , gama-Glutamiltransferase/metabolismo , gama-Glutamiltransferase/genética
4.
Clin Genet ; 106(3): 224-233, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38553872

RESUMO

Exome sequencing (ES) has identified biallelic kinesin family member 12 (KIF12) mutations as underlying neonatal cholestatic liver disease. We collected information on onset and progression of this entity. Among consecutively referred pediatric patients at our centers, diagnostic ES identified 4 patients with novel, biallelic KIF12 variants using the human GRCh38 reference sequence, as KIF12 remains incompletely annotated in the older reference sequence GRCh37. A review of these and of 21 reported patients with KIF12 variants found that presentation with elevated serum transaminase activity in the context of trivial respiratory infection, without clinical features of liver disease, was more common (n = 18) than manifest cholestatic disease progressing rapidly to liver transplantation (LT; n = 7). Onset of liver disease was at age <1 year in 15 patients; LT was more common in this group. Serum gamma-glutamyl transpeptidase activity (GGT) was elevated in all patients, and total bilirubin was elevated in 15 patients. Liver fibrosis or cirrhosis was present in 14 of 18 patients who were biopsied. The 16 different pathogenic variants and 11 different KIF12 genotypes found were not correlated with age of onset or progression to LT. Identification of biallelic pathogenic KIF12 variants distinguishes KIF12-related disease from other entities with elevated GGT.


Assuntos
Cinesinas , Hepatopatias , Mutação , gama-Glutamiltransferase , Humanos , Cinesinas/genética , gama-Glutamiltransferase/sangue , gama-Glutamiltransferase/genética , Masculino , Feminino , Hepatopatias/genética , Hepatopatias/patologia , Lactente , Sequenciamento do Exoma , Recém-Nascido , Predisposição Genética para Doença , Transplante de Fígado , Genótipo , Alelos , Pré-Escolar , Criança
5.
Cell Commun Signal ; 22(1): 402, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148040

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) infection is critical in the development and occurrence of gastric cancer. H. pylori secretes gamma-glutamyl transferase (GGT), which affects energy metabolism and histone methylation in mesenchymal stem cells. However, its effect on human gastric epithelial cells remains unclear. This study aimed to investigate the effects of GGT on energy metabolism and histone methylation in gastric epithelial cells and determine its role in the development and progression of H. pylori-induced gastric cancer. METHODS: A GGT knockout H. pylori strain and mouse gastric cancer model were constructed, and alpha-ketoglutarate (α-KG) was added. The underlying mechanism was investigated using proteomics, immunohistochemistry, Western blotting, and other experimental assays. RESULTS: H. pylori can colonize the host's stomach and destroy the gastric epithelium. GGT secreted by H. pylori decreased the concentration of glutamine in the stomach and increased H3K9me3 and H3K27me3 expression, which promoted the proliferation and migration of gastric epithelial cells. Additionally, α-KG reversed this effect. GGT increased the tumorigenic ability of nude mice. GGT, secreted by H. pylori, promoted the expression of ribosomal protein L15 (RPL15), while GGT knockout and supplementation with α-KG and trimethylation inhibitors reduced RPL15 expression and Wnt signaling pathway expression. CONCLUSIONS: H. pylori secreted GGT decreased the expression of glutamine and α-KG in gastric epithelial cells, increased the expression of histones H3K9me3 and H3K27me3, and activated the Wnt signaling pathway through RPL15 expression, ultimately changing the biological characteristics of the gastric epithelium and promoting the occurrence of gastric cancer. Altered energy metabolism and histone hypermethylation are important factors involved in this process.


Assuntos
Metabolismo Energético , Células Epiteliais , Helicobacter pylori , Histonas , Neoplasias Gástricas , gama-Glutamiltransferase , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Animais , Histonas/metabolismo , Metilação , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , gama-Glutamiltransferase/metabolismo , gama-Glutamiltransferase/genética , Camundongos , Humanos , Camundongos Nus , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Proliferação de Células , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Infecções por Helicobacter/complicações , Ácidos Cetoglutáricos/metabolismo
6.
Appl Microbiol Biotechnol ; 108(1): 149, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240797

RESUMO

In this study, we successfully applied the strategy of combining tandem promoters and tandem signal peptides with overexpressing signal peptidase to efficiently express and produce γ-glutamyl peptidase (GGT) enzymes (BsGGT, BaGGT, and BlGGT) from Bacillus subtilis, Bacillus amyloliquefaciens, and Bacillus licheniformis in Bacillus subtilis ATCC6051Δ5. In order to avoid the problem of instability caused by duplicated strong promoters, we assembled tandem promoters of different homologous genes from different species. To achieve resistance marker-free enzyme in the food industry, we first removed the replication origin and corresponding resistance marker of Escherichia coli from the expression vector. The plasmid was then transformed into the B. subtilis host, and the Kan resistance gene in the expression plasmid was directly edited and silenced using the CRISPR/Cas9n-AID base editing system. As a result, a recombinant protein expression carrier without resistance markers was constructed, and the enzyme activity of the BlGGT strain during shake flask fermentation can reach 53.65 U/mL. The recombinant BlGGT was immobilized with epoxy resin and maintained 82.8% enzyme activity after repeated use for 10 times and 87.36% enzyme activity after storage at 4 °C for 2 months. The immobilized BlGGT enzyme was used for the continuous synthesis of theanine with a conversion rate of 65.38%. These results indicated that our approach was a promising solution for improving enzyme production efficiency and achieving safe production of enzyme preparations in the food industry. KEY POINTS: • Efficient expression of recombinant proteins by a combination of dual promoter and dual signal peptide. • Construction of small vectors without resistance markers in B. subtilis using CRISPR/Cas9n-AID editing system. • The process of immobilizing BlGGT with epoxy resin was optimized.


Assuntos
Bacillus licheniformis , Bacillus subtilis , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Resinas Epóxi , Bacillus licheniformis/genética , Proteínas Recombinantes/genética , Enzimas Imobilizadas/metabolismo
7.
J Stroke Cerebrovasc Dis ; 33(6): 107685, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522756

RESUMO

OBJECTIVES: Increased plasma gamma-glutamyl transferase (GGT1) has been identified as a robust and independent risk factor for ischemic stroke (IS), but the molecular mechanisms of the enzyme-disease association are unclear. The present study investigated whether polymorphisms in the GGT1 gene contribute to IS susceptibility. MATERIALS AND METHODS: DNA samples obtained from 1288 unrelated individuals (600 IS patients and 688 controls) were genotyped for common single nucleotide polymorphisms of GGT1 using the MassArray-4 platform. RESULTS: The rs5751909 polymorphism was significantly associated with decreased risk of ischemic stroke regardless sex and age (Pperm ≤ 0.01, dominant genetic model). The haplotype rs4820599A-rs5760489A-rs5751909A showed strong protection against ischemic stroke (OR 0.53, 95 %CI 0.36 - 0.77, Pperm ≤ 0.0001). The protective effect of SNP rs5751909 in the stroke phenotype was successfully replicated in the UK Biobank, SiGN, and ISGC cohorts (P ≤ 0.01). GGT1 polymorphisms showed joint (epistatic) effects on the risk of ischemic stroke, with some known IS-associated GWAS loci (e.g., rs4322086 and rs12646447) investigated in our population. In addition, SNP rs5751909 was found to be strongly associated with a decreased risk of ischemic stroke in non-smokers (OR 0.54 95 %CI 0.39-0.75, Pperm = 0.0002) and non-alcohol abusers (OR 0.43 95 %CI 0.30-0.61, Pperm = 2.0 × 10-6), whereas no protective effects of this SNP against disease risk were observed in smokers and alcohol abusers (Pperm < 0.05). CONCLUSIONS: We propose mechanisms underlying the observed associations between GGT1 polymorphisms and ischemic stroke risk. This pilot study is the first to demonstrate that GGT1 is a novel susceptibility gene for ischemic stroke and provides additional evidence of the genetic contribution to impaired redox homeostasis underlying disease pathogenesis.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , AVC Isquêmico , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Proteção , gama-Glutamiltransferase , Humanos , Masculino , Feminino , AVC Isquêmico/genética , AVC Isquêmico/prevenção & controle , AVC Isquêmico/diagnóstico , AVC Isquêmico/epidemiologia , Pessoa de Meia-Idade , gama-Glutamiltransferase/sangue , gama-Glutamiltransferase/genética , Fatores de Risco , Estudos de Casos e Controles , Idoso , não Fumantes , Medição de Risco , Haplótipos , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/genética
8.
J Biol Chem ; 298(3): 101703, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35148992

RESUMO

Ferroptosis is an iron-dependent mode of cell death caused by excessive oxidative damage to lipids. Lipid peroxidation is normally suppressed by glutathione peroxidase 4, which requires reduced glutathione. Cystine is a major resource for glutathione synthesis, especially in cancer cells. Therefore, cystine deprivation or inhibition of cystine uptake promotes ferroptosis in cancer cells. However, the roles of other molecules involved in cysteine deprivation-induced ferroptosis are unexplored. We report here that the expression of gamma-glutamyltransferase 1 (GGT1), an enzyme that cleaves extracellular glutathione, determines the sensitivity of glioblastoma cells to cystine deprivation-induced ferroptosis at high cell density (HD). In glioblastoma cells expressing GGT1, pharmacological inhibition or deletion of GGT1 suppressed the cell density-induced increase in intracellular glutathione levels and cell viability under cystine deprivation, which were restored by the addition of cysteinylglycine, the GGT product of glutathione cleavage. On the other hand, cystine deprivation induced glutathione depletion and ferroptosis in GGT1-deficient glioblastoma cells even at an HD. Exogenous expression of GGT1 in GGT1-deficient glioblastoma cells inhibited cystine deprivation-induced glutathione depletion and ferroptosis at an HD. This suggests that GGT1 plays an important role in glioblastoma cell survival under cystine-limited and HD conditions. We conclude that combining GGT inhibitors with ferroptosis inducers may provide an effective therapeutic approach for treating glioblastoma.


Assuntos
Neoplasias Encefálicas , Cistina , Ferroptose , Glioblastoma , gama-Glutamiltransferase , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Cistina/deficiência , Cistina/metabolismo , Glioblastoma/enzimologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glutationa/metabolismo , Humanos , gama-Glutamiltransferase/biossíntese , gama-Glutamiltransferase/genética
9.
Hepatology ; 75(2): 391-402, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34387878

RESUMO

BACKGROUND AND AIMS: The quantity of alcohol leading to alcohol-associated liver disease (ALD) varies individually. Genetic backgrounds contributing to the divergence in individual susceptibility to alcohol-induced liver damage have not been elucidated in detail. APPROACH AND RESULTS: Based on the Korean Genome and Epidemiology Study Health Examination (KoGES_HEXA) cohort data, 21,919 participants (40-79 years old) were included and divided into cases and controls based on the ALD diagnostic criteria proposed by the American College of Gastroenterology. Data generated by a genome wide-association study were analyzed using logistic regression to assess the risk of ALD development in nondrinkers, light drinkers, and heavy drinkers. We detected three loci, gamma-glutamyltransferase 1 (GGT1), zinc protein finger 827 (ZNF827) and HNF1 homeobox A (HNF1A), which were significantly associated with ALD risk. The GGT1 rs2006227 minor allele was strongly associated with all groups. Among the minor alleles of single nucleotide polymorphisms (SNPs) in HNF1A, rs1183910 had the strongest association with a protective effect from ALD in light drinkers. However, this association was not observed in heavy drinkers. Five SNPs on chromosome 11 showed suggestive significance in protective effects against ALD. CONCLUSIONS: SNPs, including HNF1A rs1183910 minor allele, are the most promising genetic candidates for protection against ALD. The expression of genes contributing to ALD development may be altered by the amount of alcohol consumed.


Assuntos
Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença/epidemiologia , Fator 1-alfa Nuclear de Hepatócito/genética , Hepatopatias Alcoólicas/epidemiologia , Hepatopatias Alcoólicas/genética , gama-Glutamiltransferase/genética , Adulto , Idoso , Consumo de Bebidas Alcoólicas/epidemiologia , Alelos , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , República da Coreia/epidemiologia , Medição de Risco , Fatores de Risco
10.
Plant Cell Environ ; 46(5): 1596-1609, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36757089

RESUMO

Theanine is an important secondary metabolite endowing tea with umami taste and health effects. It is essential to explore the metabolic pathway and regulatory mechanism of theanine to improve tea quality. Here, we demonstrated that the expression patterns of CsGGT2 (γ-glutamyl-transpeptidase), participated in theanine synthesis in vitro in our previous research, are significantly different in the aboveground and underground tissues of tea plants and regulated by light. Light up-regulated the expression of CsHY5, directly binding to the promoter of CsGGT2 and acting as an activator of CsGGT2, with a negative correlation with theanine accumulation. The enzyme activity assays and transient expression in Nicotiana benthamiana showed that CsGGT2, acting as bifunctional protein, synthesize and degrade theanine in vitro and in planta. The results of enzyme kinetics, Surface plasmon resonance (SPR) assays and targeted gene-silencing assays showed that CsGGT2 had a higher substrate affinity of theanine than that of ethylamine, and performed a higher theanine degradation catalytic efficiency. Therefore, light mediates the degradation of theanine in different tissues by regulating the expression of the theanine hydrolase CsGGT2 in tea plants, and these results provide new insights into the degradation of theanine mediated by light in tea plants.


Assuntos
Camellia sinensis , Regulação da Expressão Gênica de Plantas , Luz , gama-Glutamiltransferase , Camellia sinensis/enzimologia , Camellia sinensis/genética , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteólise/efeitos da radiação
11.
Protein Expr Purif ; 210: 106321, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37315656

RESUMO

The gene encoding γ-glutamyltranspeptidase II (PaGGTII) from Pseudomonas aeruginosa PAO1 was cloned in Escherichia coli. Recombinant PaGGTII showed a weak activity (0.0332 U/mg), and it can be easily inactivated. Multiple alignment of microbial GGTs showed the redundancy of the C-terminal of the small subunit of PaGGTII in length. The truncation of eight amino acid residues at the C-terminal of PaGGTII remarkably improved the activity and stability of the enzyme (PaGGTIIΔ8; 0.388 U/mg). Further truncation at the C-terminal also provided the enzyme relatively higher activity (PaGGTIIΔ9, -Δ10, -Δ11, and -Δ12). Among C-terminal truncated mutants, we focused on PaGGTIIΔ8 and examined the effect of C-terminal amino acid residues on the properties of PaGGTIIΔ8 because the activity of PaGGTII was found to be greatly improved when 8 amino acid residues were truncated. Various mutant enzymes with different C-terminal amino acid residues were constructed. They were expressed in E. coli and purified to homogeneity by ion-exchange chromatography. The properties of PaGGTIIΔ8 and the mutants obtained from mutation at E569 were characterized. Km and kcat of PaGGTIIΔ8 for γ-glutamyl-p-nitroanilide (γ-GpNA) were 8.05 mM and 15.49 s-1, respectively. PaGGTIIΔ8E569Y showed the highest catalytic efficiency for γ-GpNA with a kcat/Km of 12.55 mM-1 s-1. Mg2+, Ca2+, and Mn2+ exhibited positive effects on the catalytic activity for PaGGTIIΔ8 and its ten E569 mutants.


Assuntos
Escherichia coli , Pseudomonas aeruginosa , Escherichia coli/metabolismo , Sequência de Aminoácidos , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/química , gama-Glutamiltransferase/metabolismo , Aminoácidos
12.
Appl Microbiol Biotechnol ; 107(11): 3551-3564, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37099056

RESUMO

L-Theanine is a multifunctional nonprotein amino acid found naturally in tea leaves. It has been developed as a commercial product for a wide range of applications in the food, pharmaceutical, and healthcare industries. However, L-theanine production catalyzed by γ-glutamyl transpeptidase (GGT) is limited by the low catalytic efficiency and specificity of this class of enzymes. Here, we developed a strategy for cavity topology engineering (CTE) based on the cavity geometry of GGT from B. subtilis 168 (CGMCC 1.1390) to obtain an enzyme with high catalytic activity and applied it to the synthesis of L-theanine. Three potential mutation sites, M97, Y418, and V555, were identified using the internal cavity as a probe, and residues G, A, V, F, Y, and Q, which may affect the shape of the cavity, were obtained directly by computer statistical analysis without energy calculations. Finally, 35 mutants were obtained. The optimal mutant Y418F/M97Q showed a 4.8-fold improvement in catalytic activity and a 25.6-fold increase in catalytic efficiency. The recombinant enzyme Y418F/M97Q exhibited a high space-time productivity of 15.4 g L-1 h-1 by whole-cell synthesis in a 5 L bioreactor, which was one of the highest concentrations reported so far at 92.4 g L-1. Overall, this strategy is expected to enhance the enzymatic activity associated with the synthesis of L-theanine and its derivatives.Key points • Cavity topology engineering was used to modify the GGT for L-theanine biocatalysis. • The catalytic efficiency of GGT was increased by 25.6-fold. • Highest productivity of L-theanine reached 15.4 g L -1 h-1 (92.4 g L-1) in a 5 L bioreactor.


Assuntos
Bacillus subtilis , gama-Glutamiltransferase , Bacillus subtilis/metabolismo , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/química , gama-Glutamiltransferase/metabolismo , Glutamatos , Biocatálise
13.
J Cell Physiol ; 237(6): 2713-2723, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35621037

RESUMO

TMEM67 (mecklin or MKS3) locates in the transition zone of cilia. Dysfunction of TMEM67 disrupts cilia-related signaling and leads to developmental defects of multiple organs in humans. Typical autosomal recessive TMEM67 defects cause partial overlapping phenotypes, including abnormalities in the brain, eyes, liver, kidneys, bones, and so forth. However, emerging reports of isolated nephronophthisis suggest the possibility of a broader phenotype spectrum. In this study, we analyzed the genetic data of cholestasis patients with no obvious extrahepatic involvement but with an unexplained high level of gamma-glutamyl transpeptidase (GGT). We identified five Han Chinese patients from three unrelated families with biallelic nonnull low-frequency TMEM67 variants. All variants were predicted pathogenic in silico, of which p. Arg820Ile and p. Leu144del were previously unreported. In vitro studies revealed that the protein levels of the TMEM67 variants were significantly decreased; however, their interaction with MKS1 remained unaffected. All the patients, aged 7-39 years old, had silently progressive cholestasis with elevated GGT but had normal bilirubin levels. Histological studies of liver biopsy of patients 1, 3, and 5 showed the presence of congenital hepatic fibrosis. We conclude that variants in TMEM67 are associated with a mild phenotype of unexplained, persistent, anicteric, and high GGT cholestasis without typical symptoms of TMEM67 defects; this possibility should be considered by physicians in gastroenterology and hepatology.


Assuntos
Colestase , gama-Glutamiltransferase , Colestase/genética , Doenças Genéticas Inatas , Humanos , Cirrose Hepática/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fenótipo , gama-Glutamiltransferase/genética
14.
Osteoporos Int ; 33(6): 1295-1307, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35059776

RESUMO

The association of serum gamma-glutamyl-transferase (GGT) with hip fracture risk has not been examined in women and men ≥ 50 years. We show that elevated GGT was associated with increased hip fracture risk, particularly in men. GGT could be a candidate serum marker of long-term hip fracture risk in the elderly. INTRODUCTION: We herein examined a possible relation between serum levels of GGT and hip fracture risk in women and men aged ≥ 50 years, which has not been investigated before. METHODS: In this population-based prospective cohort study, approximately 41,000 women and nearly 33,000 men ≥ 50 years participating in a medical prevention program 1985-2005 in western Austria were followed up for the occurrence of osteoporotic hip fractures during 2003-2013. ICD-10 based discharge diagnoses for hip fracture included S72.0, S72.1, and S72.2 available from all regional hospitals. GGT-related hip fracture risk was ascertained at each participant´s first and last examination during the prevention program. In a subset of 5445 participants, alcohol consumption could be included as a covariate. RESULTS: In men, hip fracture risk rose significantly by 75% and 86% for every tenfold increase of GGT measured at the first and last examination, respectively, and in women, hip fracture risk rose by 22% from the last examination. Elevated GGT (≥ 36 U/l in women, ≥ 56 U/l in men) at the first examination was associated with increased hip fracture risk only in men (HR 1.51, 95% CI 1.25-1.82), and at the last examination in both women (HR 1.14, 95% CI 1.02-1.28) and men (HR 1.61, 95% CI 1.33-1.95). Alcohol consumption had no significant influence on GGT-mediated hip fracture risk in women and men. CONCLUSIONS: Our findings identified an association of elevated GGT and hip fracture in women and men ≥ 50 years and suggest GGT as a candidate serum marker of long-term hip fracture risk in an elderly population.


Assuntos
Fraturas do Quadril , Fraturas por Osteoporose , gama-Glutamiltransferase , Idoso , Biomarcadores , Estudos de Coortes , Feminino , Fraturas do Quadril/diagnóstico , Fraturas do Quadril/epidemiologia , Fraturas do Quadril/etiologia , Humanos , Masculino , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Estudos Prospectivos , Fatores de Risco , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo
15.
J Pediatr Gastroenterol Nutr ; 74(5): e115-e121, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129155

RESUMO

OBJECTIVES: Progressive familial intrahepatic cholestasis is an expanding group of autosomal recessive intrahepatic cholestatic disorders. Recently, next-generation sequencing allowed identifying new genes responsible for new specific disorders. Two biochemical phenotypes have been identified according to gamma-glutamyltransferase (GGT) activity. Mutations of the myosin 5B gene (MYO5B) are known to cause microvillus inclusion disease. Recently, different mutations in MYO5B gene have been reported in patients with low-GGT cholestasis. METHODS: A multicenter retrospective and prospective study was conducted in 32 children with cryptogenic intrahepatic cholestasis. Clinical, biochemical, histological, and treatment data were analyzed in these patients. DNA from peripheral blood was extracted, and all patients were studied by whole exome sequencing followed by Sanger sequencing. RESULTS: Six patients out of 32 had mutations in the MYO5B gene. Of these six patients, the median age at disease onset was 0.8 years, and the median length of follow-up was 4.2 years. The most common signs were pruritus, poor growth, hepatomegaly, jaundice, and hypocholic stools. Two patients also showed intestinal involvement. Transaminases and conjugated bilirubin were moderately increased, serum bile acids elevated, and GGT persistently normal. At anti-Myo5B immunostaining, performed in liver biopsy of two patients, coarse granules were evident within the cytoplasm of hepatocytes while bile salt export pump was normally expressed at the canalicular membrane. Six variants in homozygosity or compound heterozygosity in the MYO5B gene were identified, and three of them have never been described before. All nucleotide alterations were located on the myosin motor domain except one missense variant found in the isoleucine-glutamine calmodulin-binding motif. CONCLUSIONS: We identified causative mutations in MYO5B in 18.7% of a selected cohort of patients with intrahepatic cholestasis confirming a relevant role for the MYO5B gene in low-GGT cholestasis.


Assuntos
Colestase Intra-Hepática , Colestase , Miosina Tipo V , Colestase/genética , Colestase Intra-Hepática/diagnóstico , Humanos , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Miosinas/genética , Fenótipo , Estudos Prospectivos , Estudos Retrospectivos , gama-Glutamiltransferase/genética
16.
Appl Microbiol Biotechnol ; 106(5-6): 1991-2006, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35230495

RESUMO

The regulation of enzyme activity through complexation with certain metal ions plays an important role in many biological processes. In addition to divalent metals, monovalent cations (MVCs) frequently function as promoters for efficient biocatalysis. Here, we examined the effect of MVCs on the enzymatic catalysis of a recombinant γ-glutamyltranspeptidase (BlrGGT) from Bacillus licheniformis ATCC 27,811 and the application of a metal-activated enzyme to L-theanine synthesis. The transpeptidase activity of BlrGGT was enhanced by Cs+ and Na+ over a broad range of concentrations with a maximum of 200 mM. The activation was essentially independent of the ionic radius, but K+ contributed the least to enhancing the catalytic efficiency. The secondary structure of BlrGGT remained mostly unchanged in the presence of different concentrations of MVCs, but there was a significant change in its tertiary structure under the same conditions. Compared with the control, the half-life (t1/2) of the Cs+-enriched enzyme at 60 and 65 °C was shown to increase from 16.3 and 4.0 min to 74.5 and 14.3 min, respectively. The simultaneous addition of Cs+ and Mg2+ ions exerted a synergistic effect on the activation of BlrGGT. This was adequately reflected by an improvement in the conversion of substrates to L-theanine by 3.3-15.1% upon the addition of 200 mM MgCl2 into a reaction mixture comprising the freshly desalted enzyme (25 µg/mL), 250 mM L-glutamine, 600 mM ethylamine, 200 mM each of the MVCs, and 50 mM borate buffer (pH 10.5). Taken together, our results provide interesting insights into the complexation of MVCs with BlrGGT and can therefore be potentially useful to the biocatalytic production of naturally occurring γ-glutamyl compounds. KEY POINTS: • The transpeptidase activity of B. licheniformis Î³-glutamyltranspeptidase can be activated by monovalent cations. • The thermal stability of the enzyme was profoundly increased in the presence of 200 mM Cs+. • The simultaneous addition of Cs+and Mg2+ions to the reaction mixture improves L-theanine production.


Assuntos
Bacillus licheniformis , Bacillus licheniformis/genética , Cátions Monovalentes , Glutamina , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , gama-Glutamiltransferase/química , gama-Glutamiltransferase/genética
17.
Am J Hum Biol ; 34(4): e23672, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34436809

RESUMO

OBJECTIVES: This cross-sectional study investigates associations between the FTO rs 17817449 genetic variant, liver enzymes, and hypertension in Slovak midlife women. METHODS: We assessed 576 Slovak women aged 39 to 65 years. The women were interviewed and examined during their medical examination at local Health Centers and then divided into subgroups according to their blood pressure status; 255 women with hypertension and 321 normotensive. The FTO genetic variant was detected by polymerase chain reaction-restriction fragment length polymorphism. Resultant data was analyzed by linear regression analysis and general linear models to adjust for risk factors associated with gamma-glutamyl transferase levels (GGT), including waist to hip ratio (WHR) and uric acid (UA). RESULTS: A significant association between the FTO variant and GGT levels was observed in the hypertensive group after control for confounding covariates, including WHR and UA (p = .004). The predicted GGT level for GT/TT hypertensive carriers is 0.158 µkat/L higher than for GG carriers. Moreover, the two-way analysis of covariance revealed significant interaction between FTO effects and hypertension on logGGT levels (p = .042). Finally, hypertensive women with the T-allele had the highest estimated marginal mean value of logGGT at -0.39 µkat/L while the GG-genotype in both hypertensive and normotensive women had the lowest value at -0.54 µkat/L. CONCLUSIONS: This study suggests that the FTO (rs17817449) variant is associated with higher serum GGT levels in hypertensive midlife women.


Assuntos
Hipertensão , gama-Glutamiltransferase , Adulto , Idoso , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Estudos Transversais , Feminino , Genótipo , Humanos , Hipertensão/epidemiologia , Hipertensão/genética , Pessoa de Meia-Idade , Eslováquia/epidemiologia , gama-Glutamiltransferase/genética
18.
Genomics ; 113(4): 2623-2633, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118380

RESUMO

Gamma-glutamyltransferase (GGT) and keratins (KRT) are key factors in regulating tumor progression rely on emerging evidence. However, the prognostic values of GGT and KRT isoforms and their regulation patterns at transcriptional and post-transcriptional levels have been rarely studied. In this study, we aimed to identify cooperative prognostic biomarker signature conducted by GGT and KRT genes for overall survival prediction and discrimination in patients with low-grade glioma (LGG) and glioblastoma multiforme (GBM). To this end, we employed a differential expression network analysis on LGG-NORMAL, GBM-NORMAL, and LGG-GBM datasets. Then, all the differentially expressed genes related to a GO term "GGT activity" were excluded. After that, for obtained potential biomarkers genes, differentially expressed lncRNAs were used to detect cis-regulatory elements (CREs) and trans-regulatory elements (TREs). To scrutinize the regulation on the cytoplasm, potential interactions between these biomarker genes and DElncRNAs were predicted. Our analysis, for the first time, revealed that GGT6, KRT33B, and KRT75 in LGG, GGT2, and KRT75 in GBM and KRT75 for LGG to GBM transformation tumors can be novel cooperative prognostic biomarkers that may be applicable for early detection of LGG, GBM, and LGG to GBM transformation tumors. Consequently, KRT75 was the most important gene being regulated at both transcriptional and post-transcriptional levels significantly. Furthermore, CREs and their relative genes were coordinative up-regulated or down-regulated suggesting CREs as regulation points of these genes. In the end, up-regulation of most DElncRNAs that had physical interaction with target genes pints out that the transcripted genes may have obstacles for translation process.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Glioma/genética , Humanos , Queratinas/genética , Queratinas/metabolismo , Isoformas de Proteínas/genética , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo
19.
Vopr Pitan ; 91(2): 43-50, 2022.
Artigo em Russo | MEDLINE | ID: mdl-35596634

RESUMO

Glutathione is an antioxidant with powerful restorative and detoxifying properties, a progressive decrease in its reserves in erythrocytes and pancreas observed in pancreatic necrosis indicates a lack of functioning of the system for maintaining the level of glutathione in cells and the use of its endogenous reserve. The study of the role of glutathione metabolism enzyme genes in the risk of acute pancreatitis in this regard is especially relevant. The aim of the study was to evaluate the joint contribution of the rs11546155 and rs6119534 polymorphic loci of the GGT7 gene and some risk factors to the development of acute pancreatitis (AP). Material and methods. Molecular genetic analysis of DNA samples of 506 unrelated patients with acute pancreatitis and 524 unrelated individuals of Russian nationality without gastrointestinal diseases, isolated by the standard method of phenol-chloroform extraction, was carried out. The average age of patients was 48.9±13.1 years, healthy persons - 47.8±12.1 years. The diagnosis was established using Clinical guidelines developed by the working group of the Russian Society of Surgeons. All patients signed informed consent to participate in the study. Genotyping was performed using iPLEX technology by time-of-flight mass spectrometry. Associations of gene alleles and genotypes with the risk of acute pancreatitis were assessed by the χ2 criterion and the odds ratio with 95% confidence intervals. Statistical analysis was performed using the SNPStats and Statistica 10.0 programs (Stat-Soft, USA). Results. We have identified an association of the C/T (rs6119534) GGT7 genotype with an increased risk of AP, both in men and women. When analyzing the effect of polymorphic loci on the development of the polymorphic locus rs6119534 of the GGT7 C>T gene with an increased risk of developing acute alcoholic (AAlcP) and biliary pancreatitis (ABP), it was found that the C/T rs6119534 genotype of the GGT7 gene was more common both among patients with AAlcP and ABP, and the G/G GGT7 genotype (rs11546155) was found only among ABP patients. An analysis of the combined influence of polymorphic loci and environmental factors showed that the frequency of drinking alcohol more than 2 times a week and eating fat more than 89 grams per day increased the risk AAlcP in carriers of C/T-T/T rs6119534 of the GGT7 gene. As for ABP, non-smoking carriers of the G/A-A/A GGT7 (rs11546155) genotypes had a reduced risk of the disease, while the consumption of fats over 89 g/day and fresh vegetables and fruits below 27 g/day increased the risk in carriers of genotypes C/T-T/T and C/T rs6119534 of the GGT7 gene, respectively. Conclusion. Polymorphic loci rs6119534 and rs11546155 of the GGT7 gene, when exposed to certain risk factors, increase the risk of acute pancreatitis.


Assuntos
Pancreatite , gama-Glutamiltransferase , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Aguda , Estudos de Casos e Controles , gama-Glutamiltransferase/genética , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Glutationa , Pancreatite/genética , Fatores de Risco
20.
Biochem Biophys Res Commun ; 534: 286-291, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288198

RESUMO

γ-Glutamyltranspeptidase (GGT) is a ubiquitous enzyme that catalyzes the hydrolysis of the γ-glutamyl linkage of γ-glutamyl compounds and the transfer of their γ-glutamyl moiety to acceptor substrates. Pseudomonas nitroreducens GGT (PnGGT) is used for the industrial synthesis of theanine, thus it is important to determine the structural basis of hydrolysis and transfer reactions and identify the acceptor site of PnGGT to improve the efficient of theanine synthesis. Our previous structural studies of PnGGT have revealed that crucial interactions between three amino acid residues, Trp385, Phe417, and Trp525, distinguish PnGGT from other GGTs. Here we report the role of Trp525 in PnGGT based on site-directed mutagenesis and structural analyses. Seven mutant variants of Trp525 were produced (W525F, W525V, W525A, W525G, W525S, W525D, and W525K), with substitution of Trp525 by nonaromatic residues resulting in dramatically reduced hydrolysis activity. All Trp525 mutants exhibited significantly increased transfer activity toward hydroxylamine with hardly any effect on acceptor substrate preference. The crystal structure of PnGGT in complex with the glutamine antagonist, 6-diazo-5-oxo-l-norleucine, revealed that Trp525 is a key residue limiting the movement of water molecules within the PnGGT active site.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Pseudomonas/enzimologia , Pseudomonas/genética , gama-Glutamiltransferase/química , gama-Glutamiltransferase/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico/genética , Cristalografia por Raios X , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Eletricidade Estática , Especificidade por Substrato , Triptofano/química , gama-Glutamiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA