Your browser doesn't support javascript.
loading
Suppression of metastatic colonization by the context-dependent activation of the c-Jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7.
Vander Griend, Donald J; Kocherginsky, Masha; Hickson, Jonathan A; Stadler, Walter M; Lin, Anning; Rinker-Schaeffer, Carrie W.
Afiliação
  • Vander Griend DJ; Committee on Cancer Biology, The University of Chicago, Illinois 60637, USA.
Cancer Res ; 65(23): 10984-91, 2005 Dec 01.
Article em En | MEDLINE | ID: mdl-16322247
ABSTRACT
Advances in clinical, translational, and basic studies of metastasis have identified molecular changes associated with specific facets of the metastatic process. Studies of metastasis suppressor gene function are providing a critical mechanistic link between signaling cascades and biological outcomes. We have previously identified c-Jun NH2-terminal kinase (JNK) kinase 1/mitogen-activated protein kinase (MAPK) kinase 4 (JNKK1/MKK4) as a prostate cancer metastasis suppressor gene. The JNKK1/MKK4 protein is a dual-specificity kinase that has been shown to phosphorylate and activate the JNK and p38 MAPKs in response to a variety of extracellular stimuli. In this current study, we show that the kinase activity of JNKK1/MKK4 is required for suppression of overt metastases and is sufficient to prolong animal survival in the AT6.1 model of spontaneous metastasis. Ectopic expression of the JNK-specific kinase MKK7 suppresses the formation of overt metastases, whereas the p38-specific kinase MKK6 has no effect. In vivo studies show that both JNKK1/MKK4 and MKK7 suppress the formation of overt metastases by inhibiting the ability of disseminated cells to colonize the lung (secondary site). Finally, we show that JNKK1/MKK4 and MKK7 from disseminated tumor cells are active in the lung but not in the primary tumor, providing a biochemical explanation for why their expression specifically suppressed metastasis while exerting no effect on the primary tumor. Taken together, these studies contribute to a mechanistic understanding of the context-dependent function of metastasis regulatory proteins.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: MAP Quinase Quinase 4 / MAP Quinase Quinase 7 / Neoplasias Pulmonares Limite: Animals Idioma: En Revista: Cancer Res Ano de publicação: 2005 Tipo de documento: Article País de afiliação: Estados Unidos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: MAP Quinase Quinase 4 / MAP Quinase Quinase 7 / Neoplasias Pulmonares Limite: Animals Idioma: En Revista: Cancer Res Ano de publicação: 2005 Tipo de documento: Article País de afiliação: Estados Unidos