Your browser doesn't support javascript.
loading
Solvent effect on the photophysical properties of the anticancer agent ellipticine.
Fung, S Y; Duhamel, J; Chen, P.
Afiliação
  • Fung SY; Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
J Phys Chem A ; 110(40): 11446-54, 2006 Oct 12.
Article em En | MEDLINE | ID: mdl-17020255
ABSTRACT
This paper investigates how solution conditions, especially solvent polarity and hydrogen bonding, affect the fluorescence of ellipticine, a natural plant alkaloid with anticancer activity. A total of 16 solvents that cover a wide range of polarities were tested. The ultraviolet (UV) absorption and fluorescence emission of ellipticine were found to be solvent dependent. The absorption and emission maximum shifted to higher wavelengths (red shift) with increased solvent polarity. The difference in absorption and emission maximum (Stokes' shift) was large, approximately 10,000-11,000 cm-1, in polar solvents (with orientation polarizability Deltaf>0.2) but unusually small, approximately 8900 cm-1, in nonpolar solvents (hexane and cyclohexane). Large Stokes' shifts were due to an intramolecular charge transfer (ICT), which was enabled by large solvent polarity and hydrogen bonding of ellipticine with the solvents. Two transitions were found in the Lippert-Mataga plot between (1) nonpolar and semipolar solvents and between (2) semipolar and polar solvents. The first transition reflected the formation of hydrogen bonds between ellipticine and the solvents whereas the second transition indicated that ellipticine underwent an ICT. In addition, the larger extinction coefficients and the longer lifetime of ellipticine obtained in protic solvents were attributed to the formation of stronger hydrogen bonds. The photophysical response of ellipticine to changes in solvent polarity and hydrogen bond formation could be used to infer the location of ellipticine in a heterogeneous medium, namely liposomes in aqueous solution. A relatively large red shift of emission in liposomes indicated that ellipticine may be in a more polar environment with respect to the lipid bilayer, possibly close to the hydrophilic interface.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solventes / Elipticinas / Antineoplásicos Idioma: En Revista: J Phys Chem A Assunto da revista: QUIMICA Ano de publicação: 2006 Tipo de documento: Article País de afiliação: Canadá
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solventes / Elipticinas / Antineoplásicos Idioma: En Revista: J Phys Chem A Assunto da revista: QUIMICA Ano de publicação: 2006 Tipo de documento: Article País de afiliação: Canadá