Your browser doesn't support javascript.
loading
New insights into the atrial electrophysiology of rodents using a novel modality: the miniature-bipolar hook electrode.
Etzion, Yoram; Mor, Michal; Shalev, Aryeh; Dror, Shani; Etzion, Ohad; Dagan, Amir; Beharier, Ofer; Moran, Arie; Katz, Amos.
Afiliação
  • Etzion Y; Cardiac Arrhythmia Research Laboratory, Soroka University Medical Center, Beer-Sheva, Israel. tzion@bgu.ac.il
Am J Physiol Heart Circ Physiol ; 295(4): H1460-9, 2008 Oct.
Article em En | MEDLINE | ID: mdl-18660446
ABSTRACT
Studies of atrial electrophysiology (EP) in rodents are challenging, and available data are sparse. Herein, we utilized a novel type of bipolar electrode to evaluate the atrial EP of rodents through small lateral thoracotomy. In anesthetized rats and mice, we attached two bipolar electrodes to the right atrium and a third to the right ventricle. This standard setup enabled high-resolution EP studies. Moreover, a permanent implantation procedure enabled EP studies in conscious freely moving rats. Atrial EP was evaluated in anesthetized rats, anesthetized mice (ICR and C57BL6 strains), and conscious rats. Signal resolution enabled atrial effective refractory period (AERP) measurements and first time evaluation of the failed 11 atrial capture, which was unexpectedly longer than the AERP recorded at near normal cycle length by 27.2+/-2.3% in rats (P<0.0001; n=35), 31.7+/-8.3% in ICR mice (P=0.0001; n=13), and 57.7+/-13.7% in C57BL6 mice (P=0.015; n=4). While AERP rate adaptation was noted when 10 S1s at near normal basic cycle lengths were followed by S2 at varying basic cycle length and S3 for AERP evaluation, such rate adaptation was absent using conventional S1S2 protocols. Atrial tachypacing in rats shortened the AERP values on a timescale of hours, but a reverse remodeling phase was noted thereafter. Comparison of left vs. right atrial pacing in rats was also feasible with the current technique, resulting in similar AERP values recorded in the low right atrium. In conclusion, our findings indicate that in vivo rate adaptation of the rodent atria is different than expected based on previous ex vivo recordings. In addition, atrial electrical remodeling of rats shows unique remodeling-reverse remodeling characteristics that are described here for the first time. Further understanding of these properties should help to determine the clinical relevance as well as limitations of atrial arrhythmia models in rodents.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Marca-Passo Artificial / Taquicardia Supraventricular / Estimulação Cardíaca Artificial / Função Atrial / Monitorização Ambulatorial / Técnicas Eletrofisiológicas Cardíacas / Microeletrodos Tipo de estudo: Guideline / Prognostic_studies Limite: Animals Idioma: En Revista: Am J Physiol Heart Circ Physiol Assunto da revista: CARDIOLOGIA / FISIOLOGIA Ano de publicação: 2008 Tipo de documento: Article País de afiliação: Israel

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Marca-Passo Artificial / Taquicardia Supraventricular / Estimulação Cardíaca Artificial / Função Atrial / Monitorização Ambulatorial / Técnicas Eletrofisiológicas Cardíacas / Microeletrodos Tipo de estudo: Guideline / Prognostic_studies Limite: Animals Idioma: En Revista: Am J Physiol Heart Circ Physiol Assunto da revista: CARDIOLOGIA / FISIOLOGIA Ano de publicação: 2008 Tipo de documento: Article País de afiliação: Israel