Comparison of electron-transfer rates for metal- versus ring-centered redox processes of porphyrins in monolayers on Au(111).
Langmuir
; 24(20): 12047-53, 2008 Oct 21.
Article
em En
| MEDLINE
| ID: mdl-18823081
The standard electron-transfer rate constants ( k ( 0 )) are measured for redox processes of Fe versus Zn porphyrins in monolayers on Au(111); the former undergoes a metal-centered redox process (conversion between Fe (III) and Fe (II) oxidation states) whereas the latter undergoes a ring-centered redox process (conversion between the neutral porphyrin and the pi-cation radical). Each porphyrin contains three meso-mesityl groups and a benzyl thiol for surface attachment. Under identical solvent (propylene carbonate)/electrolyte (1.0 M Bu 4NCl) conditions, the Zn (II) center has a coordinated Cl (-) ion when the porphyrin is in either the neutral or oxidized state. In the case of the Fe porphyrin, two species are observed a low-potential form ( E l (0) approximately -0.6 V) wherein the metal center has a coordinated Cl (-) ion when it is in either the Fe (II) or Fe (III) state and a high-potential form ( E h (0) approximately +0.2 V) wherein the metal center undergoes ligand exchange upon conversion from the Fe (III) to Fe (II) states. The k ( 0 ) values observed for all of the porphyrins depend on surface concentration, with higher concentrations resulting in slower rates, consistent with previous studies on porphyrin monolayers. The k ( 0 ) values for the ring-centered redox process (Zn chelate) are 10-40 times larger than those for the metal-centered process (Fe chelate); the k ( 0 ) values for the two forms of the Fe porphyrin differ by a factor of 2-4 (depending on surface concentration), the Cl (-) exchanging form generally exhibiting a faster rate. The faster rates for the ring- versus metal-centered redox process are attributed to the participating molecular orbitals and their proximity to the surface (given that the porphyrins are relatively upright on the surface): a pi molecular orbital that has significant electron density at the meso-carbon atoms (one of which is the site of attachment of the linker to the surface anchoring thiol) versus a d-orbital that is relatively well localized on the metal center.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Langmuir
Assunto da revista:
QUIMICA
Ano de publicação:
2008
Tipo de documento:
Article
País de afiliação:
Estados Unidos