Atlas-based auto-segmentation of head and neck CT images.
Med Image Comput Comput Assist Interv
; 11(Pt 2): 434-41, 2008.
Article
em En
| MEDLINE
| ID: mdl-18982634
Treatment planning for high precision radiotherapy of head and neck (H&N) cancer patients requires accurate delineation of many structures and lymph node regions. Manual contouring is tedious and suffers from large inter- and intra-rater variability. To reduce manual labor, we have developed a fully automated, atlas-based method for H&N CT image segmentation that employs a novel hierarchical atlas registration approach. This registration strategy makes use of object shape information in the atlas to help improve the registration efficiency and robustness while still being able to account for large inter-subject shape differences. Validation results showed that our method provides accurate segmentation for many structures despite difficulties presented by real clinical data. Comparison of two different atlas selection strategies is also reported.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Reconhecimento Automatizado de Padrão
/
Inteligência Artificial
/
Interpretação de Imagem Radiográfica Assistida por Computador
/
Intensificação de Imagem Radiográfica
/
Tomografia Computadorizada por Raios X
/
Técnica de Subtração
/
Neoplasias de Cabeça e Pescoço
Tipo de estudo:
Diagnostic_studies
/
Guideline
Limite:
Humans
Idioma:
En
Revista:
Med Image Comput Comput Assist Interv
Assunto da revista:
DIAGNOSTICO POR IMAGEM
/
INFORMATICA MEDICA
Ano de publicação:
2008
Tipo de documento:
Article
País de afiliação:
Estados Unidos