Your browser doesn't support javascript.
loading
Coupling the hemodynamic environment to the evolution of cerebral aneurysms: computational framework and numerical examples.
Watton, Paul N; Raberger, Nikolaus B; Holzapfel, Gerhard A; Ventikos, Yiannis.
Afiliação
  • Watton PN; Department of Engineering Science and Institute of Biomedical Engineering, University of Oxford, UK. paul.watton@eng.ox.ac.uk
J Biomech Eng ; 131(10): 101003, 2009 Oct.
Article em En | MEDLINE | ID: mdl-19831473
ABSTRACT
The physiological mechanisms that give rise to the inception and development of a cerebral aneurysm are accepted to involve the interplay between the local mechanical forces acting on the arterial wall and the biological processes occurring at the cellular level. In fact, the wall shear stresses (WSSs) that act on the endothelial cells are thought to play a pivotal role. A computational framework is proposed to explore the link between the evolution of a cerebral aneurysm and the influence of hemodynamic stimuli that act on the endothelial cells. An aneurysm evolution model, which utilizes a realistic microstructural model of the arterial wall, is combined with detailed 3D hemodynamic solutions. The evolution of the blood flow within the developing aneurysm determines the distributions of the WSS and the spatial WSS gradient (WSSG) that act on the endothelial cell layer of the tissue. Two illustrative examples are considered Degradation of the elastinous constituents is driven by deviations of WSS or the WSSG from normotensive values. This model provides the basis to further explore the etiology of aneurysmal disease.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aneurisma Intracraniano / Hemodinâmica Limite: Humans Idioma: En Revista: J Biomech Eng Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aneurisma Intracraniano / Hemodinâmica Limite: Humans Idioma: En Revista: J Biomech Eng Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Reino Unido