Your browser doesn't support javascript.
loading
Simultaneous chemical and photochemical protein crosslinking induced by irradiation of eye lens proteins in the presence of ascorbate: the photosensitizing role of an UVA-visible-absorbing decomposition product of vitamin C.
Avila, Felipe; Friguet, Bertrand; Silva, Eduardo.
Afiliação
  • Avila F; Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago de Chile.
Photochem Photobiol Sci ; 9(10): 1351-8, 2010 Oct 28.
Article em En | MEDLINE | ID: mdl-20734005
ABSTRACT
Exposure to light has been implicated as a risk factor during aging of the eye lens and in cataract generation. In order to visualize the actual effect of UVA-visible light on this tissue, we incubated water-soluble eye lens proteins with ascorbate in the presence and absence of UVA-visible light for 3, 6 and 9 days at low oxygen concentration. The samples incubated in the presence of light were characterized by an initially small but continuous increase over time of the protein crosslinking. This was not the result of more extensive glycation because the decrease in amino group content of the proteins and the decomposition of ascorbate was the same in both irradiated and unirradiated samples. The augmented crosslinking capacity observed in the presence of UVA-visible light is due to the generation of a chromophore from the decomposition of ascorbate. This chromophore, obtained after 3, 6 and 9 days of incubation of solutions containing only ascorbate, induces both protein-crosslinking and oxidation after exposure to UVA-visible light in the presence of lens proteins. The extent of the crosslinking was proportional to the amount of the chromophore present in the solution. The presence of this chromophore was also determined when ascorbate was incubated with four-fold higher concentrations of N-α-acetyl lysine and N-α-acetyl arginine. When these samples were used as photosensitizers, the crosslinking degree was conditioned by the presence of this chromophore; nonetheless, the ascorbate-mediated advanced glycation end product (AGE) generation also made a contribution. The results of this work indicate that ascorbate oxidation, which generates the AGEs responsible for the chemical crosslinking of the lens proteins, also simultaneously produces a chromophore that can act as a photosensitizer, further increasing the protein crosslinking.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácido Ascórbico / Raios Ultravioleta / Fármacos Fotossensibilizantes / Reagentes de Ligações Cruzadas / Cristalinas / Luz Tipo de estudo: Risk_factors_studies Idioma: En Revista: Photochem Photobiol Sci Assunto da revista: BIOLOGIA / QUIMICA Ano de publicação: 2010 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácido Ascórbico / Raios Ultravioleta / Fármacos Fotossensibilizantes / Reagentes de Ligações Cruzadas / Cristalinas / Luz Tipo de estudo: Risk_factors_studies Idioma: En Revista: Photochem Photobiol Sci Assunto da revista: BIOLOGIA / QUIMICA Ano de publicação: 2010 Tipo de documento: Article