Your browser doesn't support javascript.
loading
Enhancement of cellulolytic enzyme activity by clustering cellulose binding domains on nanoscaffolds.
Kim, Do-Myoung; Umetsu, Mitsuo; Takai, Kyo; Matsuyama, Takashi; Ishida, Nobuhiro; Takahashi, Haruo; Asano, Ryutaro; Kumagai, Izumi.
Afiliação
  • Kim DM; Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-11, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
Small ; 7(5): 656-64, 2011 Mar 07.
Article em En | MEDLINE | ID: mdl-21290602
ABSTRACT
Cellulose, one of the most abundant carbon resources, is degraded by cellulolytic enzymes called cellulases. Cellulases are generally modular proteins with independent catalytic and cellulose-binding domain (CBD) modules and, in some bacteria, catalytic modules are noncovalently assembled on a scaffold protein with CBD to form a giant protein complex called a cellulosome, which efficiently degrades water-insoluble hard materials. In this study, a catalytic module and CBD are independently prepared by recombinant means, and are heterogeneously clustered on streptavidin and on inorganic nanoparticles for the construction of artificial cellulosomes. Heteroclustering of the catalytic module with CBD results in significant improvements in the enzyme's degradation activity for water-insoluble substrates. In particular, the increase of CBD valency in the cluster structure critically enhances the catalytic activity by improving the affinity for substrates, and clustering with multiple CBDs on CdSe nanoparticles generates a 7.2-fold increase in the production of reducing sugars relative to that of the native free enzyme. The multivalent design of substrate-binding domain on clustered cellulases is important for the construction of the artificial cellulosome, and the nanoparticles are an effective scaffold for increasing the valence of CBD in clustered cellulases. A new design is proposed for artificial cellulosomes with multiple CBDs on noncellulosome-derived scaffold structures.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Celulose / Nanoestruturas Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2011 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Celulose / Nanoestruturas Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2011 Tipo de documento: Article País de afiliação: Japão