S-Glutathionyl quantification in the attomole range using glutaredoxin-3-catalyzed cysteine derivatization and capillary gel electrophoresis with laser-induced fluorescence detection.
Anal Bioanal Chem
; 401(7): 2165-75, 2011 Oct.
Article
em En
| MEDLINE
| ID: mdl-21842197
S-glutathionylation (Pr-SSG) is a specific post-translational modification of cysteine residues by the addition of glutathione. S-Glutathionylated proteins induced by oxidative or nitrosative stress play an essential role in understanding the pathogenesis of the aging and age-related disorder, such as Alzheimer's disease (AD). The purpose of this research is to develop a novel and ultrasensitive method to accurately and rapidly quantify the Pr-SSG by using capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF). The derivatization method is based on the specific reduction of protein-bound S-glutathionylation with glutaredoxin (Grx) and labeling with thiol-reactive fluorescent dye (Dylight 488 maleimide). The experiments were performed by coupling the derivatization method with CGE-LIF to study electrophoretic profiling in in vitro oxidative stress model-S-glutathionylated bovine serum albumin (BSA-SSG), oxidant-induced human colon adenocarcinoma (HT-29) cells, brain tissues, and whole blood samples from an AD transgenic (Tg) mouse model. The results showed almost an eightfold increase in S-glutathionyl abundance when subjecting HT-29 cells in an oxidant environment, resulting in Pr-SSG at 232 ± 10.64 (average ±SD; n=3) nmol/mg. In the AD-Tg mouse model, an initial quantitative measurement demonstrated the extent of protein S-glutathionylation in three brain regions (hippocampus, cerebellum, and cerebrum), ranging from 1 to 10 nmol/mg. Additionally, we described our developed method to potentially serve as a highly desirable diagnostic tool for monitoring S-glutathionylated protein profile in minuscule amount of whole blood. The whole blood samples for S-glutathionyl expression of 5-month-old AD-Tg mice are quantified as 16.3 µmol/L (=7.2 nmol/mg protein). Altogether, this is a fast, easy, and accurate method, reaching the lowest limit of Pr-SSG detection at 1.8 attomole (amol) level, reported to date.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Processamento de Proteína Pós-Traducional
/
Eletroforese Capilar
/
Cisteína
/
Glutarredoxinas
/
Glutationa
/
Lasers
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Anal Bioanal Chem
Ano de publicação:
2011
Tipo de documento:
Article
País de afiliação:
Estados Unidos