Fast bundle algorithm for multiple-instance learning.
IEEE Trans Pattern Anal Mach Intell
; 34(6): 1068-79, 2012 Jun.
Article
em En
| MEDLINE
| ID: mdl-21987558
We present a bundle algorithm for multiple-instance classification and ranking. These frameworks yield improved models on many problems possessing special structure. Multiple-instance loss functions are typically nonsmooth and nonconvex, and current algorithms convert these to smooth nonconvex optimization problems that are solved iteratively. Inspired by the latest linear-time subgradient-based methods for support vector machines, we optimize the objective directly using a nonconvex bundle method. Computational results show this method is linearly scalable, while not sacrificing generalization accuracy, permitting modeling on new and larger data sets in computational chemistry and other applications. This new implementation facilitates modeling with kernels.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Reconhecimento Automatizado de Padrão
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
IEEE Trans Pattern Anal Mach Intell
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2012
Tipo de documento:
Article
País de afiliação:
Estados Unidos