Your browser doesn't support javascript.
loading
Fast bundle algorithm for multiple-instance learning.
Bergeron, Charles; Moore, Gregory; Zaretzki, Jed; Breneman, Curt M; Bennett, Kristin P.
Afiliação
  • Bergeron C; Departments of Mathematical Sciences and Electrical, Systems, and Computer Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, USA. chbergeron@gmail.com
IEEE Trans Pattern Anal Mach Intell ; 34(6): 1068-79, 2012 Jun.
Article em En | MEDLINE | ID: mdl-21987558
We present a bundle algorithm for multiple-instance classification and ranking. These frameworks yield improved models on many problems possessing special structure. Multiple-instance loss functions are typically nonsmooth and nonconvex, and current algorithms convert these to smooth nonconvex optimization problems that are solved iteratively. Inspired by the latest linear-time subgradient-based methods for support vector machines, we optimize the objective directly using a nonconvex bundle method. Computational results show this method is linearly scalable, while not sacrificing generalization accuracy, permitting modeling on new and larger data sets in computational chemistry and other applications. This new implementation facilitates modeling with kernels.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Reconhecimento Automatizado de Padrão Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: IEEE Trans Pattern Anal Mach Intell Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Reconhecimento Automatizado de Padrão Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: IEEE Trans Pattern Anal Mach Intell Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Estados Unidos