Your browser doesn't support javascript.
loading
Architecture of the human regulatory network derived from ENCODE data.
Gerstein, Mark B; Kundaje, Anshul; Hariharan, Manoj; Landt, Stephen G; Yan, Koon-Kiu; Cheng, Chao; Mu, Xinmeng Jasmine; Khurana, Ekta; Rozowsky, Joel; Alexander, Roger; Min, Renqiang; Alves, Pedro; Abyzov, Alexej; Addleman, Nick; Bhardwaj, Nitin; Boyle, Alan P; Cayting, Philip; Charos, Alexandra; Chen, David Z; Cheng, Yong; Clarke, Declan; Eastman, Catharine; Euskirchen, Ghia; Frietze, Seth; Fu, Yao; Gertz, Jason; Grubert, Fabian; Harmanci, Arif; Jain, Preti; Kasowski, Maya; Lacroute, Phil; Leng, Jing Jane; Lian, Jin; Monahan, Hannah; O'Geen, Henriette; Ouyang, Zhengqing; Partridge, E Christopher; Patacsil, Dorrelyn; Pauli, Florencia; Raha, Debasish; Ramirez, Lucia; Reddy, Timothy E; Reed, Brian; Shi, Minyi; Slifer, Teri; Wang, Jing; Wu, Linfeng; Yang, Xinqiong; Yip, Kevin Y; Zilberman-Schapira, Gili.
Afiliação
  • Gerstein MB; Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA.
  • Kundaje A; Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave, New Haven, CT 06520, USA.
  • Hariharan M; Department of Computer Science, Yale University, 51 Prospect Street, New Haven, CT 06511, USA.
  • Landt SG; Department of Computer Science, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.
  • Yan KK; Department of Genetics, Stanford University, 300 Pasteur Dr., M-344 Stanford, CA 94305, USA.
  • Cheng C; Department of Genetics, Stanford University, 300 Pasteur Dr., M-344 Stanford, CA 94305, USA.
  • Mu XJ; Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA.
  • Khurana E; Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave, New Haven, CT 06520, USA.
  • Rozowsky J; Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA.
  • Alexander R; Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave, New Haven, CT 06520, USA.
  • Min R; Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA.
  • Alves P; Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA.
  • Abyzov A; Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave, New Haven, CT 06520, USA.
  • Addleman N; Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave, New Haven, CT 06520, USA.
  • Bhardwaj N; Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA.
  • Boyle AP; Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave, New Haven, CT 06520, USA.
  • Cayting P; Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA.
  • Charos A; Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave, New Haven, CT 06520, USA.
  • Chen DZ; Department of Machine Learning, NEC Laboratories America, 4 Independence Way, Princeton, NJ 08540, USA.
  • Cheng Y; Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA.
  • Clarke D; Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA.
  • Eastman C; Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave, New Haven, CT 06520, USA.
  • Euskirchen G; Department of Genetics, Stanford University, 300 Pasteur Dr., M-344 Stanford, CA 94305, USA.
  • Frietze S; Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA.
  • Fu Y; Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave, New Haven, CT 06520, USA.
  • Gertz J; Department of Genetics, Stanford University, 300 Pasteur Dr., M-344 Stanford, CA 94305, USA.
  • Grubert F; Department of Genetics, Stanford University, 300 Pasteur Dr., M-344 Stanford, CA 94305, USA.
  • Harmanci A; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.
  • Jain P; Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave, New Haven, CT 06520, USA.
  • Kasowski M; Department of Genetics, Stanford University, 300 Pasteur Dr., M-344 Stanford, CA 94305, USA.
  • Lacroute P; Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA.
  • Leng JJ; Department of Genetics, Stanford University, 300 Pasteur Dr., M-344 Stanford, CA 94305, USA.
  • Lian J; Department of Genetics, Stanford University, 300 Pasteur Dr., M-344 Stanford, CA 94305, USA.
  • Monahan H; Department of Biochemistry & Molecular Biology, University of Southern California, Norris Comprehensive Cancer Center, 1450 Biggy Street, NRT 6503, Los Angeles, CA 90089, USA.
  • O'Geen H; Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA.
  • Ouyang Z; HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA.
  • Partridge EC; Department of Genetics, Stanford University, 300 Pasteur Dr., M-344 Stanford, CA 94305, USA.
  • Patacsil D; Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA.
  • Pauli F; Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave, New Haven, CT 06520, USA.
  • Raha D; HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA.
  • Ramirez L; Department of Genetics, Stanford University, 300 Pasteur Dr., M-344 Stanford, CA 94305, USA.
  • Reddy TE; Department of Genetics, Stanford University, 300 Pasteur Dr., M-344 Stanford, CA 94305, USA.
  • Reed B; Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA.
  • Shi M; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
  • Slifer T; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.
  • Wang J; Genome Center, University of California-Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
  • Wu L; Department of Genetics, Stanford University, 300 Pasteur Dr., M-344 Stanford, CA 94305, USA.
  • Yang X; HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA.
  • Yip KY; Department of Genetics, Stanford University, 300 Pasteur Dr., M-344 Stanford, CA 94305, USA.
  • Zilberman-Schapira G; HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA.
Nature ; 489(7414): 91-100, 2012 Sep 06.
Article em En | MEDLINE | ID: mdl-22955619
Transcription factors bind in a combinatorial fashion to specify the on-and-off states of genes; the ensemble of these binding events forms a regulatory network, constituting the wiring diagram for a cell. To examine the principles of the human transcriptional regulatory network, we determined the genomic binding information of 119 transcription-related factors in over 450 distinct experiments. We found the combinatorial, co-association of transcription factors to be highly context specific: distinct combinations of factors bind at specific genomic locations. In particular, there are significant differences in the binding proximal and distal to genes. We organized all the transcription factor binding into a hierarchy and integrated it with other genomic information (for example, microRNA regulation), forming a dense meta-network. Factors at different levels have different properties; for instance, top-level transcription factors more strongly influence expression and middle-level ones co-regulate targets to mitigate information-flow bottlenecks. Moreover, these co-regulations give rise to many enriched network motifs (for example, noise-buffering feed-forward loops). Finally, more connected network components are under stronger selection and exhibit a greater degree of allele-specific activity (that is, differential binding to the two parental alleles). The regulatory information obtained in this study will be crucial for interpreting personal genome sequences and understanding basic principles of human biology and disease.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / DNA / Genoma Humano / Sequências Reguladoras de Ácido Nucleico / Enciclopédias como Assunto / Redes Reguladoras de Genes / Anotação de Sequência Molecular Limite: Humans Idioma: En Revista: Nature Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / DNA / Genoma Humano / Sequências Reguladoras de Ácido Nucleico / Enciclopédias como Assunto / Redes Reguladoras de Genes / Anotação de Sequência Molecular Limite: Humans Idioma: En Revista: Nature Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Estados Unidos