Multifunctional biodegradable polymer nanoparticles with uniform sizes: generation and in vitro anti-melanoma activity.
Nanotechnology
; 24(45): 455302, 2013 Nov 15.
Article
em En
| MEDLINE
| ID: mdl-24145641
We present a simple, yet versatile strategy for the fabrication of uniform biodegradable polymer nanoparticles (NPs) with controllable sizes by a hand-driven membrane-extrusion emulsification approach. The size and size distribution of the NPs can be easily tuned by varying the experimental parameters, including initial polymer concentration, surfactant concentration, number of extrusion passes, membrane pore size, and polymer molecular weight. Moreover, hydrophobic drugs (e.g., paclitaxel (PTX)) and inorganic NPs (e.g., quantum dots (QDs) and magnetic NPs (MNPs)) can be effectively and simultaneously encapsulated into the polymer NPs to form the multifunctional hybrid NPs through this facile route. These PTX-loaded NPs exhibit high encapsulation efficiency and drug loading density as well as excellent drug sustained release performance. As a proof of concept, the A875 cell (melanoma cell line) experiment in vitro, including cellular uptake analysis by fluorescence microscope, cytotoxicity analysis of NPs, and magnetic resonance imaging (MRI) studies, indicates that the PTX-loaded hybrid NPs produced by this technique could be potentially applied as a multifunctional delivery system for drug delivery, bio-imaging, and tumor therapy, including malignant melanoma therapy.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Tamanho da Partícula
/
Polímeros
/
Materiais Biocompatíveis
/
Nanopartículas de Magnetita
/
Melanoma
Limite:
Humans
Idioma:
En
Revista:
Nanotechnology
Ano de publicação:
2013
Tipo de documento:
Article