Your browser doesn't support javascript.
loading
KRAS mutation status is associated with enhanced dependency on folate metabolism pathways in non-small cell lung cancer cells.
Moran, Diarmuid M; Trusk, Patricia B; Pry, Karen; Paz, Keren; Sidransky, David; Bacus, Sarah S.
Afiliação
  • Moran DM; Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and
  • Trusk PB; Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and
  • Pry K; Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and
  • Paz K; Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and
  • Sidransky D; Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and
  • Bacus SS; Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and
Mol Cancer Ther ; 13(6): 1611-24, 2014 Jun.
Article em En | MEDLINE | ID: mdl-24688052
KRAS gene mutation is linked to poor prognosis and resistance to therapeutics in non-small cell lung cancer (NSCLC). In this study, we have explored the possibility of exploiting inherent differences in KRAS-mutant cell metabolism for treatment. This study identified a greater dependency on folate metabolism pathways in KRAS mutant compared with KRAS wild-type NSCLC cell lines. Microarray gene expression and biologic pathway analysis identified higher expression of folate metabolism- and purine synthesis-related pathways in KRAS-mutant NSCLC cells compared with wild-type counterparts. Moreover, pathway analysis and knockdown studies suggest a role for MYC transcriptional activity in the expression of these pathways in KRAS-mutant NSCLC cells. Furthermore, KRAS knockdown and overexpression studies demonstrated the ability of KRAS to regulate expression of genes that comprise folate metabolism pathways. Proliferation studies demonstrated higher responsiveness to methotrexate, pemetrexed, and other antifolates in KRAS-mutant NSCLC cells. Surprisingly, KRAS gene expression is downregulated in KRAS wild-type and KRAS-mutant cells by antifolates, which may also contribute to higher efficacy of antifolates in KRAS-mutant NSCLC cells. In vivo analysis of multiple tumorgraft models in nude mice identified a KRAS-mutant tumor among the pemetrexed-responsive tumors and also demonstrated an association between expression of the folate pathway gene, methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), and antifolate activity. Collectively, we identify altered regulation of folate metabolism in KRAS-mutant NSCLC cells that may account for higher antifolate activity in this subtype of NSCLC.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Proto-Oncogênicas / Carcinoma Pulmonar de Células não Pequenas / Proteínas ras / Ácido Fólico Tipo de estudo: Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Mol Cancer Ther Assunto da revista: ANTINEOPLASICOS Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Proto-Oncogênicas / Carcinoma Pulmonar de Células não Pequenas / Proteínas ras / Ácido Fólico Tipo de estudo: Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Mol Cancer Ther Assunto da revista: ANTINEOPLASICOS Ano de publicação: 2014 Tipo de documento: Article