Your browser doesn't support javascript.
loading
Enzyme-responsive intracellular-controlled release using silica mesoporous nanoparticles capped with ε-poly-L-lysine.
Mondragón, Laura; Mas, Núria; Ferragud, Vicente; de la Torre, Cristina; Agostini, Alessandro; Martínez-Máñez, Ramón; Sancenón, Félix; Amorós, Pedro; Pérez-Payá, Enrique; Orzáez, Mar.
Afiliação
  • Mondragón L; Centro de Reconocimiento Molecular y Desarrollo Tecnológico, Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Camino de Vera s/n, 46022 Valencia (Spain).
Chemistry ; 20(18): 5271-81, 2014 Apr 25.
Article em En | MEDLINE | ID: mdl-24700694
ABSTRACT
The synthesis and characterization of two new capped silica mesoporous nanoparticles for controlled delivery purposes are described. Capped hybrid systems consist of MCM-41 nanoparticles functionalized on the outer surface with polymer ε-poly-L-lysine by two different anchoring strategies. In both cases, nanoparticles were loaded with model dye molecule [Ru(bipy)3](2+). An anchoring strategy involved the random formation of urea bonds by the treatment of propyl isocyanate-functionalized MCM-41 nanoparticles with the lysine amino groups located on the ε-poly-L-lysine backbone (solid Ru-rLys-S1). The second strategy involved a specific attachment through the carboxyl terminus of the polypeptide with azidopropyl-functionalized MCM-41 nanoparticles (solid Ru-tLys-S1). Once synthesized, both nanoparticles showed a nearly zero cargo release in water due to the coverage of the nanoparticle surface by polymer ε-poly-L-lysine. In contrast, a remarkable payload delivery was observed in the presence of proteases due to the hydrolysis of the polymer's amide bonds. Once chemically characterized, studies of the viability and the lysosomal enzyme-controlled release of the dye in intracellular media were carried out. Finally, the possibility of using these materials as drug-delivery systems was tested by preparing the corresponding ε-poly-L-lysine capped mesoporous silica nanoparticles loaded with cytotoxic drug camptothecin (CPT), CPT-rLys-S1 and CPT-tLys-S1. Cellular uptake and cell-death induction were studied. The efficiency of both nanoparticles as new potential platforms for cancer treatment was demonstrated.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polilisina / Dióxido de Silício / Preparações de Ação Retardada / Nanopartículas Limite: Humans Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polilisina / Dióxido de Silício / Preparações de Ação Retardada / Nanopartículas Limite: Humans Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2014 Tipo de documento: Article