Your browser doesn't support javascript.
loading
Soot superaggregates from flaming wildfires and their direct radiative forcing.
Chakrabarty, Rajan K; Beres, Nicholas D; Moosmüller, Hans; China, Swarup; Mazzoleni, Claudio; Dubey, Manvendra K; Liu, Li; Mishchenko, Michael I.
Afiliação
  • Chakrabarty RK; 1] Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA [2] Desert Research Institute, Nevada System of Higher Education, Reno, Nevada, USA.
  • Beres ND; Desert Research Institute, Nevada System of Higher Education, Reno, Nevada, USA.
  • Moosmüller H; Desert Research Institute, Nevada System of Higher Education, Reno, Nevada, USA.
  • China S; Atmospheric Sciences Program, Michigan Technological University, Houghton, Michigan, USA.
  • Mazzoleni C; Atmospheric Sciences Program, Michigan Technological University, Houghton, Michigan, USA.
  • Dubey MK; Earth System Observations, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
  • Liu L; NASA Goddard Institute for Space Studies, New York, NY 10025, USA.
  • Mishchenko MI; NASA Goddard Institute for Space Studies, New York, NY 10025, USA.
Sci Rep ; 4: 5508, 2014 Jul 01.
Article em En | MEDLINE | ID: mdl-24981204
ABSTRACT
Wildfires contribute significantly to global soot emissions, yet their aerosol formation mechanisms and resulting particle properties are poorly understood and parameterized in climate models. The conventional view holds that soot is formed via the cluster-dilute aggregation mechanism in wildfires and emitted as aggregates with fractal dimension Df ≈ 1.8 mobility diameter Dm ≤ 1 µm, and aerodynamic diameter Da ≤ 300 nm. Here we report the ubiquitous presence of soot superaggregates (SAs) in the outflow from a major wildfire in India. SAs are porous, low-density aggregates of cluster-dilute aggregates with characteristic Df ≈ 2.6, Dm > 1 µm, and Da ≤ 300 nm that form via the cluster-dense aggregation mechanism. We present additional observations of soot SAs in wildfire smoke-laden air masses over Northern California, New Mexico, and Mexico City. At 550 nm wavelength, [corrected] we estimate that SAs contribute, per unit optical depth, up to 35% less atmospheric warming than freshly-emitted (D(f) ≈ 1.8) [corrected] aggregates, and ≈90% more warming than the volume-equivalent spherical soot particles simulated in climate models.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Sci Rep Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Sci Rep Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos