Your browser doesn't support javascript.
loading
Bayesian two-part spatial models for semicontinuous data with application to emergency department expenditures.
Neelon, Brian; Zhu, Li; Neelon, Sara E Benjamin.
Afiliação
  • Neelon B; Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street Suite 303, MSC 835, Charleston, SC 29425, USA neelon@musc.edu.
  • Zhu L; Department of Biostatistics, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261, USA.
  • Neelon SE; Department of Community and Family Medicine, Duke University School of Medicine, 2200 W. Main Street, Durham, NC 27705, USA.
Biostatistics ; 16(3): 465-79, 2015 Jul.
Article em En | MEDLINE | ID: mdl-25649743
In health services research, it is common to encounter semicontinuous data characterized by a point mass at zero and a continuous distribution of positive values. Examples include medical expenditures, in which the zeros represent patients who do not use health services, while the continuous distribution describes the level of expenditures among users. Semicontinuous data are customarily analyzed using two-part mixture models. In the spatial analysis of semicontinuous data, two-part models are especially appealing because they provide a joint picture of how health services utilization and associated expenditures vary across geographic regions. However, when applying these models, careful attention must be paid to distributional choices, as model misspecification can lead to biased and imprecise inferences. This paper introduces a broad class of Bayesian two-part models for the spatial analysis of semicontinuous data. Specific models considered include two-part lognormal, log skew-elliptical, and Bayesian non-parametric models. Multivariate conditionally autoregressive priors are used to link model components and provide spatial smoothing across neighboring regions, resulting in a joint spatial modeling framework for health utilization and expenditures. We develop a fully conjugate Gibbs sampling scheme, leading to efficient posterior computation. We illustrate the approach using data from a recent study of emergency department expenditures.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos / Teorema de Bayes / Gastos em Saúde / Serviço Hospitalar de Emergência Tipo de estudo: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: America do norte Idioma: En Revista: Biostatistics Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos / Teorema de Bayes / Gastos em Saúde / Serviço Hospitalar de Emergência Tipo de estudo: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: America do norte Idioma: En Revista: Biostatistics Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos