Your browser doesn't support javascript.
loading
Mutation of Putative N-Glycosylation Sites on Dengue Virus NS4B Decreases RNA Replication.
Naik, Nenavath Gopal; Wu, Huey-Nan.
Afiliação
  • Naik NG; Molecular Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Centre and Academia Sinica, Taipei, Taiwan Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
  • Wu HN; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan hnwu@gate.sinica.edu.tw.
J Virol ; 89(13): 6746-60, 2015 Jul.
Article em En | MEDLINE | ID: mdl-25878113
UNLABELLED: Dengue virus (DENV) nonstructural protein 4B (NS4B) is an endoplasmic reticulum (ER) membrane-associated protein, and mutagenesis studies have revealed its significance in viral genome replication. In this work, we demonstrated that NS4B is an N-glycosylated protein in virus-infected cells as well as in recombinant protein expression. NS4B is N glycosylated at residues 58 and 62 and exists in two forms, glycosylated and unglycosylated. We manipulated full-length infectious RNA clones and subgenomic replicons to generate N58Q, N62Q, and N58QN62Q mutants. Each of the single mutants had distinct effects, but the N58QN62Q mutation resulted in dramatic reduction of viral production efficiency without affecting secretion or infectivity of the virion in mammalian and mosquito C6/36 hosts. Real-time quantitative PCR (qPCR), subgenomic replicon, and trans-complementation assays indicated that the N58QN62Q mutation affected RNA replication possibly by the loss of glycans. In addition, four intragenic mutations (S59Y, S59F, T66A, and A137T) were obtained from mammalian and/or mosquito C6/36 cell culture systems. All of these second-site mutations compensated for the replication defect of the N58QN62Q mutant without creating novel glycosylation sites. In vivo protein stability analyses revealed that the N58QN62Q mutation alone or plus a compensatory mutation did not affect the stability of NS4B. Overall, our findings indicated that mutation of putative N-glycosylation sites affected the biological function of NS4B in the viral replication complex. IMPORTANCE: This is the first report to identify and reveal the biological significance of dengue virus (DENV) nonstructural protein 4B (NS4B) posttranslation N-glycosylation to the virus life cycle. The study demonstrated that NS4B is N glycosylated in virus-infected cells and in recombinant protein expression. NS4B is modified by glycans at Asn-58 and Asn-62. Functional characterization implied that DENV NS4B utilizes the glycosylation machinery in both mammalian and mosquito hosts. Four intragenic mutations were found to compensate for replication and subsequent viral production deficiencies without creating novel N-glycosylation sites or modulating the stabilities of the protein, suggesting that glycans may be involved in maintaining the NS4B protein conformation. NS4B glycans may be necessary elements of the viral life cycle, but compensatory mutations can circumvent their requirement. This novel finding may have broader implications in flaviviral biology as the most likely glycan at Asn-62 of NS4B is conserved in DENV serotypes and in some related flaviviruses.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Replicação Viral / RNA Viral / Proteínas não Estruturais Virais / Mutação de Sentido Incorreto / Vírus da Dengue Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: J Virol Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Taiwan

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Replicação Viral / RNA Viral / Proteínas não Estruturais Virais / Mutação de Sentido Incorreto / Vírus da Dengue Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: J Virol Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Taiwan