NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.
J Environ Sci (China)
; 31: 74-80, 2015 May 01.
Article
em En
| MEDLINE
| ID: mdl-25968261
Selective catalytic reduction technology using NH3 as a reducing agent (NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction (H2-TPR). The catalytic activities of V5CexSby/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5CexSby/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400°C, the V5CexSby/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210°C, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Titânio
/
Cério
/
Compostos de Vanádio
/
Amônia
/
Antimônio
Idioma:
En
Revista:
J Environ Sci (China)
Assunto da revista:
SAUDE AMBIENTAL
Ano de publicação:
2015
Tipo de documento:
Article