Your browser doesn't support javascript.
loading
Drivers of the dynamics of diazotrophs and denitrifiers in North Sea bottom waters and sediments.
Fan, Haoxin; Bolhuis, Henk; Stal, Lucas J.
Afiliação
  • Fan H; Department of Marine Microbiology, Royal Netherlands Institute for Sea Research Yerseke, Netherlands.
  • Bolhuis H; Department of Marine Microbiology, Royal Netherlands Institute for Sea Research Yerseke, Netherlands.
  • Stal LJ; Department of Marine Microbiology, Royal Netherlands Institute for Sea Research Yerseke, Netherlands ; Department of Aquatic Microbiology, Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands.
Front Microbiol ; 6: 738, 2015.
Article em En | MEDLINE | ID: mdl-26257718
The fixation of dinitrogen (N2) and denitrification are two opposite processes in the nitrogen cycle. The former transfers atmospheric dinitrogen gas into bound nitrogen in the biosphere, while the latter returns this bound nitrogen back to atmospheric dinitrogen. It is unclear whether or not these processes are intimately connected in any microbial ecosystem or that they are spatially and/or temporally separated. Here, we measured seafloor nitrogen fixation and denitrification as well as pelagic nitrogen fixation by using the stable isotope technique. Alongside, we measured the diversity, abundance, and activity of nitrogen-fixing and denitrifying microorganisms at three stations in the southern North Sea. Nitrogen fixation ranged from undetectable to 2.4 nmol N L(-1) d(-1) and from undetectable to 8.2 nmol N g(-1) d(-1) in the water column and seafloor, respectively. The highest rates were measured in August at Doggersbank, both for the water column and for the seafloor. Denitrification ranged from 1.7 to 208.8 µmol m(-2) d(-1) and the highest rates were measured in May at the Oyster Grounds. DNA sequence analysis showed sequences of nifH, a structural gene for nitrogenase, related to sequences from anaerobic sulfur/iron reducers and sulfate reducers. Sequences of the structural gene for nitrite reductase, nirS, were related to environmental clones from marine sediments. Quantitative polymerase chain reaction (qPCR) data revealed the highest abundance of nifH and nirS genes at the Oyster Grounds. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) data revealed the highest nifH expression at Doggersbank and the highest nirS expression at the Oyster Grounds. The distribution of the diazotrophic and denitrifying communities seems to be subject to different selecting factors, leading to spatial and temporal separation of nitrogen fixation and denitrification. These selecting factors include temperature, organic matter availability, and oxygen concentration.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Microbiol Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Microbiol Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Holanda