Your browser doesn't support javascript.
loading
Variations in task constraints shape emergent performance outcomes and complexity levels in balancing.
Caballero Sánchez, Carla; Barbado Murillo, David; Davids, Keith; Moreno Hernández, Francisco J.
Afiliação
  • Caballero Sánchez C; Centro de Investigación del Deporte, Universidad Miguel Hernández, Av. de la Universidad s/n, CP: 03202, Elche, Alicante, Spain. ccaballero@umh.es.
  • Barbado Murillo D; Centro de Investigación del Deporte, Universidad Miguel Hernández, Av. de la Universidad s/n, CP: 03202, Elche, Alicante, Spain.
  • Davids K; Centre of Sports Engineering Research, Sheffield Hallam University, Collegiate Hall, Collegiate Campus, Sheffield, S1 1WB, UK.
  • Moreno Hernández FJ; Centro de Investigación del Deporte, Universidad Miguel Hernández, Av. de la Universidad s/n, CP: 03202, Elche, Alicante, Spain.
Exp Brain Res ; 234(6): 1611-22, 2016 06.
Article em En | MEDLINE | ID: mdl-26838357
ABSTRACT
This study investigated the extent to which specific interacting constraints of performance might increase or decrease the emergent complexity in a movement system, and whether this could affect the relationship between observed movement variability and the central nervous system's capacity to adapt to perturbations during balancing. Fifty-two healthy volunteers performed eight trials where different performance constraints were manipulated task difficulty (three levels) and visual biofeedback conditions (with and without the center of pressure (COP) displacement and a target displayed). Balance performance was assessed using COP-based

measures:

mean velocity magnitude (MVM) and bivariate variable error (BVE). To assess the complexity of COP, fuzzy entropy (FE) and detrended fluctuation analysis (DFA) were computed. ANOVAs showed that MVM and BVE increased when task difficulty increased. During biofeedback conditions, individuals showed higher MVM but lower BVE at the easiest level of task difficulty. Overall, higher FE and lower DFA values were observed when biofeedback was available. On the other hand, FE reduced and DFA increased as difficulty level increased, in the presence of biofeedback. However, when biofeedback was not available, the opposite trend in FE and DFA values was observed. Regardless of changes to task constraints and the variable investigated, balance performance was positively related to complexity in every condition. Data revealed how specificity of task constraints can result in an increase or decrease in complexity emerging in a neurobiological system during balance performance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desempenho Psicomotor / Percepção Visual / Equilíbrio Postural / Retroalimentação Sensorial Limite: Adult / Female / Humans / Male Idioma: En Revista: Exp Brain Res Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desempenho Psicomotor / Percepção Visual / Equilíbrio Postural / Retroalimentação Sensorial Limite: Adult / Female / Humans / Male Idioma: En Revista: Exp Brain Res Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Espanha