Pathway-Based Genomics Prediction using Generalized Elastic Net.
PLoS Comput Biol
; 12(3): e1004790, 2016 Mar.
Article
em En
| MEDLINE
| ID: mdl-26960204
We present a novel regularization scheme called The Generalized Elastic Net (GELnet) that incorporates gene pathway information into feature selection. The proposed formulation is applicable to a wide variety of problems in which the interpretation of predictive features using known molecular interactions is desired. The method naturally steers solutions toward sets of mechanistically interlinked genes. Using experiments on synthetic data, we demonstrate that pathway-guided results maintain, and often improve, the accuracy of predictors even in cases where the full gene network is unknown. We apply the method to predict the drug response of breast cancer cell lines. GELnet is able to reveal genetic determinants of sensitivity and resistance for several compounds. In particular, for an EGFR/HER2 inhibitor, it finds a possible trans-differentiation resistance mechanism missed by the corresponding pathway agnostic approach.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Reconhecimento Automatizado de Padrão
/
Transdução de Sinais
/
Mapeamento Cromossômico
/
Proteoma
/
Mapeamento de Interação de Proteínas
/
Modelos Genéticos
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Animals
/
Humans
Idioma:
En
Revista:
PLoS Comput Biol
Assunto da revista:
BIOLOGIA
/
INFORMATICA MEDICA
Ano de publicação:
2016
Tipo de documento:
Article
País de afiliação:
Estados Unidos