Your browser doesn't support javascript.
loading
Short-chain aliphatic ester synthesis using Thermobifida fusca cutinase.
Su, Lingqia; Hong, Ruoyu; Guo, Xiaojie; Wu, Jing; Xia, Yongmei.
Afiliação
  • Su L; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
  • Hong R; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
  • Guo X; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
  • Wu J; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China. Electronic address: jingwu@jiangnan
  • Xia Y; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
Food Chem ; 206: 131-6, 2016 Sep 01.
Article em En | MEDLINE | ID: mdl-27041308
ABSTRACT
Short-chain aliphatic esters are commonly used as fruit flavorings in the food industry. In this study, Thermobifida fusca (T. fusca) cutinase was used for the synthesis of aliphatic esters, and the maximum yield of ethyl caproate reached 99.2% at a cutinase concentration of 50U/ml, 40°C, and water content of 0.5%, representing the highest ester yield to date. The cutinase-catalyzed esterification displayed strong tolerance for water content (up to 8%) and acid concentration (up to 0.8M). At substrate concentrations ⩽0.8M, the ester yield remained above 80%. Moreover, ester yields of more than 98% and 95% were achieved for acids of C3-C8 and alcohols of C1-C6, respectively, indicating extensive chain length selectivity of the cutinase. These results demonstrate the superior ability of T. fusca cutinase to catalyze the synthesis of short-chain esters. This study provides the basis for industrial production of short-chain esters using T. fusca cutinase.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrolases de Éster Carboxílico / Actinobacteria / Ésteres Idioma: En Revista: Food Chem Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrolases de Éster Carboxílico / Actinobacteria / Ésteres Idioma: En Revista: Food Chem Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China