Your browser doesn't support javascript.
loading
Tests of General Relativity with GW150914.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B.
Afiliação
  • Abbott BP; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Abbott R; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Abbott TD; Louisiana State University, Baton Rouge, Louisiana 70803, USA.
  • Abernathy MR; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Acernese F; Università di Salerno, Fisciano, I-84084 Salerno, Italy.
  • Ackley K; INFN, Sezione di Napoli, Complesso Universitario di Monte Sant'Angelo, I-80126 Napoli, Italy.
  • Adams C; University of Florida, Gainesville, Florida 32611, USA.
  • Adams T; LIGO Livingston Observatory, Livingston, Louisiana 70754, USA.
  • Addesso P; Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France.
  • Adhikari RX; Università di Salerno, Fisciano, I-84084 Salerno, Italy.
  • Adya VB; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Affeldt C; Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany.
  • Agathos M; Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany.
  • Agatsuma K; Nikhef, Science Park, 1098 XG Amsterdam, Netherlands.
  • Aggarwal N; Nikhef, Science Park, 1098 XG Amsterdam, Netherlands.
  • Aguiar OD; LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Aiello L; Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, S ao Paulo, Brazil.
  • Ain A; INFN, Gran Sasso Science Institute, I-67100 L'Aquila, Italy.
  • Ajith P; INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy.
  • Allen B; Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India.
  • Allocca A; International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560012, India.
  • Altin PA; Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany.
  • Anderson SB; University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA.
  • Anderson WG; Leibniz Universität Hannover, D-30167 Hannover, Germany.
  • Arai K; Università di Pisa, I-56127 Pisa, Italy.
  • Araya MC; INFN, Sezione di Pisa, I-56127 Pisa, Italy.
  • Arceneaux CC; Australian National University, Canberra, Australian Capital Territory 0200, Australia.
  • Areeda JS; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Arnaud N; University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA.
  • Arun KG; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Ascenzi S; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Ashton G; The University of Mississippi, University, Mississippi 38677, USA.
  • Ast M; California State University Fullerton, Fullerton, California 92831, USA.
  • Aston SM; LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91400 Orsay, France.
  • Astone P; Chennai Mathematical Institute, Chennai 603103, India.
  • Aufmuth P; INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy.
  • Aulbert C; Università di Roma Tor Vergata, I-00133 Roma, Italy.
  • Babak S; University of Southampton, Southampton SO17 1BJ, United Kingdom.
  • Bacon P; Universität Hamburg, D-22761 Hamburg, Germany.
  • Bader MK; LIGO Livingston Observatory, Livingston, Louisiana 70754, USA.
  • Baker PT; INFN, Sezione di Roma, I-00185 Roma, Italy.
  • Baldaccini F; Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany.
  • Ballardin G; Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany.
  • Ballmer SW; Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-14476 Potsdam-Golm, Germany.
  • Barayoga JC; APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris Cedex 13, France.
  • Barclay SE; Nikhef, Science Park, 1098 XG Amsterdam, Netherlands.
  • Barish BC; Montana State University, Bozeman, Montana 59717, USA.
  • Barker D; Università di Perugia, I-06123 Perugia, Italy.
  • Barone F; INFN, Sezione di Perugia, I-06123 Perugia, Italy.
  • Barr B; European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy.
Phys Rev Lett ; 116(22): 221101, 2016 Jun 03.
Article em En | MEDLINE | ID: mdl-27314708
ABSTRACT
The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant's mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasinormal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parametrized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a 90%-confidence lower bound of 10^{13} km. In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos