New Linear and Star-Shaped Thermogelling Poly([R]-3-hydroxybutyrate) Copolymers.
Chemistry
; 22(30): 10501-12, 2016 Jul 18.
Article
em En
| MEDLINE
| ID: mdl-27345491
The synthesis of multi-arm poly([R]-3-hydroxybutyrate) (PHB)-based triblock copolymers (poly([R]-3-hydroxybutyrate)-b-poly(N-isopropylacrylamide)-b-[[poly(methyl ether methacrylate)-g-poly(ethylene glycol)]-co-[poly(methacrylate)-g-poly(propylene glycol)]], PHB-b-PNIPAAM-b-(PPEGMEMA-co-PPPGMA), and their subsequent self-assembly into thermo-responsive hydrogels is described. Atom transfer radical polymerization (ATRP) of N-isopropylacrylamide (NIPAAM) followed by poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) and poly(propylene glycol) methacrylate (PPGMA) was achieved from bromoesterified multi-arm PHB macroinitiators. The composition of the resulting copolymers was investigated by (1) H and (13) C J-MOD NMR spectroscopy as well as size-exclusion chromatography (SEC), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The copolymers featuring different architectures and distinct hydrophilic/hydrophobic contents were found to self-assemble into thermo-responsive gels in aqueous solution. Rheological studies indicated that the linear one-arm PHB-based copolymer tend to form a micellar solution, whereas the two- and four-arm PHB-based copolymers afforded gels with enhanced mechanical properties and solid-like behavior. These investigations are the first to correlate the gelation properties to the arm number of a PHB-based copolymer. All copolymers revealed a double thermo-responsive behavior due to the NIPAAM and PPGMA blocks, thus allowing first the copolymer self-assembly at room temperature, and then the delivery of a drug at body temperature (37 °C). The non-significant toxic response of the gels, as assessed by the cell viability of the CCD-112CoN human fibroblast cell line with different concentrations of the triblock copolymers ranging from 0.03 to 1â
mg mL(-1) , suggest that these PHB-based thermo-responsive gels are promising candidate biomaterials for drug-delivery applications.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Poliésteres
/
Hidrogéis
/
Hidroxibutiratos
Limite:
Humans
Idioma:
En
Revista:
Chemistry
Assunto da revista:
QUIMICA
Ano de publicação:
2016
Tipo de documento:
Article
País de afiliação:
França