Your browser doesn't support javascript.
loading
Seasonality of temperate forest photosynthesis and daytime respiration.
Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R.
Afiliação
  • Wehr R; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
  • Munger JW; School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
  • McManus JB; Aerodyne Research Inc., Billerica, Massachusetts 01821, USA.
  • Nelson DD; Aerodyne Research Inc., Billerica, Massachusetts 01821, USA.
  • Zahniser MS; Aerodyne Research Inc., Billerica, Massachusetts 01821, USA.
  • Davidson EA; Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland 21532, USA.
  • Wofsy SC; School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Saleska SR; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
Nature ; 534(7609): 680-3, 2016 06 30.
Article em En | MEDLINE | ID: mdl-27357794
ABSTRACT
Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fotossíntese / Estações do Ano / Luz Solar / Árvores / Florestas Tipo de estudo: Prognostic_studies Idioma: En Revista: Nature Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fotossíntese / Estações do Ano / Luz Solar / Árvores / Florestas Tipo de estudo: Prognostic_studies Idioma: En Revista: Nature Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos