SNP interaction pattern identifier (SIPI): an intensive search for SNP-SNP interaction patterns.
Bioinformatics
; 33(6): 822-833, 2017 03 15.
Article
em En
| MEDLINE
| ID: mdl-28039167
Motivation: Testing SNP-SNP interactions is considered as a key for overcoming bottlenecks of genetic association studies. However, related statistical methods for testing SNP-SNP interactions are underdeveloped. Results: We propose the SNP Interaction Pattern Identifier (SIPI), which tests 45 biologically meaningful interaction patterns for a binary outcome. SIPI takes non-hierarchical models, inheritance modes and mode coding direction into consideration. The simulation results show that SIPI has higher power than MDR (Multifactor Dimensionality Reduction), AA_Full, Geno_Full (full interaction model with additive or genotypic mode) and SNPassoc in detecting interactions. Applying SIPI to the prostate cancer PRACTICAL consortium data with approximately 21 000 patients, the four SNP pairs in EGFR-EGFR , EGFR-MMP16 and EGFR-CSF1 were found to be associated with prostate cancer aggressiveness with the exact or similar pattern in the discovery and validation sets. A similar match for external validation of SNP-SNP interaction studies is suggested. We demonstrated that SIPI not only searches for more meaningful interaction patterns but can also overcome the unstable nature of interaction patterns. Availability and Implementation: The SIPI software is freely available at http://publichealth.lsuhsc.edu/LinSoftware/ . Contact: hlin1@lsuhsc.edu. Supplementary information: Supplementary data are available at Bioinformatics online.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Neoplasias da Próstata
/
Software
/
Estatística como Assunto
/
Polimorfismo de Nucleotídeo Único
/
Epistasia Genética
/
Estudos de Associação Genética
Tipo de estudo:
Clinical_trials
/
Prognostic_studies
Limite:
Humans
/
Male
Idioma:
En
Revista:
Bioinformatics
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2017
Tipo de documento:
Article
País de afiliação:
Estados Unidos