Your browser doesn't support javascript.
loading
Implementing Machine Learning in Radiology Practice and Research.
Kohli, Marc; Prevedello, Luciano M; Filice, Ross W; Geis, J Raymond.
Afiliação
  • Kohli M; 1 Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, M-391, San Francisco, CA 94143.
  • Prevedello LM; 2 Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH.
  • Filice RW; 3 Department of Radiology, MedStar Georgetown University Hospital, Washington, DC.
  • Geis JR; 4 Department of Radiology, University of Colorado School of Medicine, Fort Collins, CO.
AJR Am J Roentgenol ; 208(4): 754-760, 2017 Apr.
Article em En | MEDLINE | ID: mdl-28125274
OBJECTIVE: The purposes of this article are to describe concepts that radiologists should understand to evaluate machine learning projects, including common algorithms, supervised as opposed to unsupervised techniques, statistical pitfalls, and data considerations for training and evaluation, and to briefly describe ethical dilemmas and legal risk. CONCLUSION: Machine learning includes a broad class of computer programs that improve with experience. The complexity of creating, training, and monitoring machine learning indicates that the success of the algorithms will require radiologist involvement for years to come, leading to engagement rather than replacement.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Radiologia / Algoritmos / Reconhecimento Automatizado de Padrão / Interpretação de Imagem Assistida por Computador / Pesquisa Biomédica / Aprendizado de Máquina Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans País/Região como assunto: America do norte Idioma: En Revista: AJR Am J Roentgenol Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Radiologia / Algoritmos / Reconhecimento Automatizado de Padrão / Interpretação de Imagem Assistida por Computador / Pesquisa Biomédica / Aprendizado de Máquina Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans País/Região como assunto: America do norte Idioma: En Revista: AJR Am J Roentgenol Ano de publicação: 2017 Tipo de documento: Article