Implementing Machine Learning in Radiology Practice and Research.
AJR Am J Roentgenol
; 208(4): 754-760, 2017 Apr.
Article
em En
| MEDLINE
| ID: mdl-28125274
OBJECTIVE: The purposes of this article are to describe concepts that radiologists should understand to evaluate machine learning projects, including common algorithms, supervised as opposed to unsupervised techniques, statistical pitfalls, and data considerations for training and evaluation, and to briefly describe ethical dilemmas and legal risk. CONCLUSION: Machine learning includes a broad class of computer programs that improve with experience. The complexity of creating, training, and monitoring machine learning indicates that the success of the algorithms will require radiologist involvement for years to come, leading to engagement rather than replacement.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Radiologia
/
Algoritmos
/
Reconhecimento Automatizado de Padrão
/
Interpretação de Imagem Assistida por Computador
/
Pesquisa Biomédica
/
Aprendizado de Máquina
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Limite:
Humans
País/Região como assunto:
America do norte
Idioma:
En
Revista:
AJR Am J Roentgenol
Ano de publicação:
2017
Tipo de documento:
Article