Your browser doesn't support javascript.
loading
Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system, looking in particular at stability and efficiency.
Li, Qian; Li, Hao; Wang, Gaojun; Wang, Xiaochang.
Afiliação
  • Li Q; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi; Key Laboratory of Environmental Eng
  • Li H; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi; Key Laboratory of Environmental Eng
  • Wang G; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi; Key Laboratory of Environmental Eng
  • Wang X; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi; Key Laboratory of Environmental Eng
Bioresour Technol ; 237: 231-239, 2017 Aug.
Article em En | MEDLINE | ID: mdl-28238640
ABSTRACT
A continuously stirred tank reactor (CSTR) with a high feeding frequency (HFF) of once every 15min was employed in order to ease the loading shock frequently occurred in digester with a low feeding frequency. The effects of the organic loading rate (OLR) and temperature on the co-digestion of food waste and waste activated sludge was evaluated in a 302-day long-term experiment. Due to the high hydrolysis rate, the maximum CH4 yield in a thermophilic reactor was 407mL CH4/gVSadded, a value that was significantly higher than the 350mL CH4/gVSadded that occurred in a mesophilic reactor. Although the alkalinity declined when HRT was shorted than 10d, caused by the decrease of conversion ratio from protein to ammonium, the increase of specific methanogenic activity helped HFF system to achieve stable performance at an OLR of 11.2 (HRT 7.5d) and 30.2gVS/L/d (HRT 3d) under mesophilic and thermophilic conditions, respectively.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Eliminação de Resíduos / Reatores Biológicos / Alimentos Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Eliminação de Resíduos / Reatores Biológicos / Alimentos Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2017 Tipo de documento: Article