Your browser doesn't support javascript.
loading
Optimized isolation and expansion of human airway epithelial basal cells from endobronchial biopsy samples.
Gowers, Kate H C; Hynds, Robert E; Thakrar, Ricky M; Carroll, Bernadette; Birchall, Martin A; Janes, Sam M.
Afiliação
  • Gowers KHC; Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK.
  • Hynds RE; Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK.
  • Thakrar RM; Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK.
  • Carroll B; Department of Thoracic Medicine, University College Hospital, London, UK.
  • Birchall MA; Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK.
  • Janes SM; Department of Thoracic Medicine, University College Hospital, London, UK.
J Tissue Eng Regen Med ; 12(1): e313-e317, 2018 01.
Article em En | MEDLINE | ID: mdl-28488809
Autologous airway epithelial cells have been used in clinical tissue-engineered airway transplantation procedures with a view to assisting mucosal regeneration and restoring mucociliary escalator function. However, limited time is available for epithelial cell expansion due to the urgent nature of these interventions and slow epithelial regeneration has been observed in patients. Human airway epithelial cells can be expanded from small biopsies or brushings taken during bronchoscopy procedures, but the optimal mode of tissue acquisition from patients has not been investigated. Here, we compared endobronchial brushing and endobronchial biopsy samples in terms of their cell number and their ability to initiate basal epithelial stem cell cultures. We found that direct co-culture of samples with 3T3-J2 feeder cells in culture medium containing a Rho-associated protein kinase inhibitor, Y-27632, led to the selective expansion of greater numbers of basal epithelial stem cells during the critical early stages of culture than traditional techniques. Additionally, we established the benefit of initiating cell cultures from cell suspensions, either using brushing samples or through enzymatic digestion of biopsies, over explant culture. Primary epithelial cell cultures were initiated from endobronchial biopsy samples that had been cryopreserved before the initiation of cell cultures, suggesting that cryopreservation could eliminate the requirement for close proximity between the clinical facility in which biopsy samples are taken and the specialist laboratory in which epithelial cells are cultured. Overall, our results suggest ways to expedite epithelial cell preparation in future airway cell therapy or bioengineered airway transplantation procedures.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Brônquios / Separação Celular / Células Epiteliais Limite: Animals / Humans Idioma: En Revista: J Tissue Eng Regen Med Assunto da revista: BIOTECNOLOGIA / HISTOLOGIA Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Brônquios / Separação Celular / Células Epiteliais Limite: Animals / Humans Idioma: En Revista: J Tissue Eng Regen Med Assunto da revista: BIOTECNOLOGIA / HISTOLOGIA Ano de publicação: 2018 Tipo de documento: Article