Your browser doesn't support javascript.
loading
Essential amino acid ingestion alters expression of genes associated with amino acid sensing, transport, and mTORC1 regulation in human skeletal muscle.
Graber, Ted G; Borack, Michael S; Reidy, Paul T; Volpi, Elena; Rasmussen, Blake B.
Afiliação
  • Graber TG; Division of Rehabilitation Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1124 USA.
  • Borack MS; Division of Rehabilitation Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1124 USA.
  • Reidy PT; Division of Rehabilitation Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1124 USA.
  • Volpi E; Present Address: Department of Physical Therapy, University of Utah, Salt Lake City, Utah USA.
  • Rasmussen BB; Department of Internal Medicine - Geriatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1124 USA.
Nutr Metab (Lond) ; 14: 35, 2017.
Article em En | MEDLINE | ID: mdl-28503190
ABSTRACT

BACKGROUND:

Amino acid availability stimulates protein synthesis via the mTORC1 (mechanistic target of rapamycin complex 1) signaling pathway. In response to an increase in cellular amino acid availability, translocation of cytosolic mTORC1 to the lysosomal surface is required to stimulate mTORC1 kinase activity. However, research elucidating the amino acid responsive mechanisms have thus far only been conducted in in vitro models. Our primary objective was to determine whether an increase in amino acid availability within human skeletal muscle in vivo would alter the expression of genes associated with amino acid sensing, transport and mTORC1 regulation. Our secondary objective was to determine whether an acute perturbation in lysosomal function would disrupt the normal pattern of muscle amino acid responsive gene expression.

METHODS:

We recruited 13 young adults into one of two groups The first group ingested 10 g of essential amino acids (EAA). The second group ingested 10 g of EAA in the presence of chloroquine (CQ), a lysosomotropic agent. The subjects from each group had biopsies of the vastus lateralis taken before and after EAA ingestion. We determined the relative mRNA expression of 51 potential amino acid responsive genes using RT-qPCR.

RESULTS:

There was a differential mRNA expression for 22 genes, with 15 mRNAs significantly changing (P < 0.05) in response to EAA ingestion (e.g., REDD1 +209 ± 35%; SLC38A9 +31 ± 9%; SLC38A10 +57 ± 15%). In the CQ group, EAA ingestion resulted in a differential expression as compared to EAA alone (i.e., 11 out of the 22 genes were different (P < 0.05) between the two groups.).

CONCLUSIONS:

Expression of several amino acid sensing, transport, and mTORC1 regulatory genes in human skeletal muscle are responsive to an increase in amino acid availability. Furthermore, potential acute disruption of lysosomal function by ingestion of chloroquine interferes with the normal pattern of gene expression following feeding. Our in vivo data in humans provide preliminary support for the in vitro work linking amino acid sensing pathways to mTORC1 translocation to the lysosome. TRIAL REGISTRATION NCT00891696. Registered 29 April 2009.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Revista: Nutr Metab (Lond) Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Revista: Nutr Metab (Lond) Ano de publicação: 2017 Tipo de documento: Article