Your browser doesn't support javascript.
loading
In Situ Determination of the Water Condensation Mechanisms on Superhydrophobic and Superhydrophilic Titanium Dioxide Nanotubes.
Macias-Montero, Manuel; Lopez-Santos, Carmen; Filippin, A Nicolas; Rico, Victor J; Espinos, Juan P; Fraxedas, Jordi; Perez-Dieste, Virginia; Escudero, Carlos; Gonzalez-Elipe, Agustin R; Borras, Ana.
Afiliação
  • Macias-Montero M; Nanotechnology on Surfaces Laboratory, Materials Science Institute of Seville (CSIC-US) , Américo Vespucio 49, 41092 Seville, Spain.
  • Lopez-Santos C; Nanotechnology on Surfaces Laboratory, Materials Science Institute of Seville (CSIC-US) , Américo Vespucio 49, 41092 Seville, Spain.
  • Filippin AN; Nanotechnology on Surfaces Laboratory, Materials Science Institute of Seville (CSIC-US) , Américo Vespucio 49, 41092 Seville, Spain.
  • Rico VJ; Nanotechnology on Surfaces Laboratory, Materials Science Institute of Seville (CSIC-US) , Américo Vespucio 49, 41092 Seville, Spain.
  • Espinos JP; Nanotechnology on Surfaces Laboratory, Materials Science Institute of Seville (CSIC-US) , Américo Vespucio 49, 41092 Seville, Spain.
  • Fraxedas J; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
  • Perez-Dieste V; Alba Synchrotron Light Source, Carrer de la Llum 2-26, 08290-Cerdanyola del Vallès, Barcelona, Spain.
  • Escudero C; Alba Synchrotron Light Source, Carrer de la Llum 2-26, 08290-Cerdanyola del Vallès, Barcelona, Spain.
  • Gonzalez-Elipe AR; Nanotechnology on Surfaces Laboratory, Materials Science Institute of Seville (CSIC-US) , Américo Vespucio 49, 41092 Seville, Spain.
  • Borras A; Nanotechnology on Surfaces Laboratory, Materials Science Institute of Seville (CSIC-US) , Américo Vespucio 49, 41092 Seville, Spain.
Langmuir ; 33(26): 6449-6456, 2017 07 05.
Article em En | MEDLINE | ID: mdl-28586225
ABSTRACT
One-dimensional (1D) nanostructured surfaces based on high-density arrays of nanowires and nanotubes of photoactive titanium dioxide (TiO2) present a tunable wetting behavior from superhydrophobic to superhydrophilic states. These situations are depicted in a reversible way by simply irradiating with ultraviolet light (superhydrophobic to superhydrophilic) and storage in dark. In this article, we combine in situ environmental scanning electron microscopy (ESEM) and near ambient pressure photoemission analysis (NAPP) to understand this transition. These experiments reveal complementary information at microscopic and atomic level reflecting the surface wettability and chemical state modifications experienced by these 1D surfaces upon irradiation. We pay special attention to the role of the water condensation mechanisms and try to elucidate the relationship between apparent water contact angles of sessile drops under ambient conditions at the macroscale with the formation of droplets by water condensation at low temperature and increasing humidity on the nanotubes' surfaces. Thus, for the as-grown nanotubes, we reveal a metastable and superhydrophobic Cassie state for sessile drops that tunes toward water dropwise condensation at the microscale compatible with a partial hydrophobic Wenzel state. For the UV-irradiated surfaces, a filmwise wetting behavior is observed for both condensed water and sessile droplets. NAPP analyses show a hydroxyl accumulation on the as-grown nanotubes surfaces during the exposure to water condensation conditions, whereas the water filmwise condensation on a previously hydroxyl enriched surface is proved for the superhydrophilic counterpart.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Espanha