Your browser doesn't support javascript.
loading
The impact of the 2016 Fort McMurray Horse River Wildfire on ambient air pollution levels in the Athabasca Oil Sands Region, Alberta, Canada.
Landis, Matthew S; Edgerton, Eric S; White, Emily M; Wentworth, Gregory R; Sullivan, Amy P; Dillner, Ann M.
Afiliação
  • Landis MS; US EPA, Office of Research and Development, Research Triangle Park, NC, USA. Electronic address: landis.matthew@epa.gov.
  • Edgerton ES; Atmospheric Research & Analysis, Inc., Cary, NC, USA.
  • White EM; Maed Consulting, Chapel Hill, NC, USA.
  • Wentworth GR; Alberta Environment and Parks, Environmental Monitoring and Science Division, Edmonton, AB, Canada.
  • Sullivan AP; Colorado State University, Fort Collins, CO, USA.
  • Dillner AM; University of California, Davis, CA, USA.
Sci Total Environ ; 618: 1665-1676, 2018 Mar 15.
Article em En | MEDLINE | ID: mdl-29102183
An unprecedented wildfire impacted the northern Alberta city of Fort McMurray in May 2016 causing a mandatory city wide evacuation and the loss of 2,400 homes and commercial structures. A two-hectare wildfire was discovered on May 1, grew to ~157,000ha by May 5, and continued to burn an estimated ~590,000ha by June 13. A comprehensive air monitoring network operated by the Wood Buffalo Environmental Association (WBEA) in and around Fort McMurray provided essential health-related real-time air quality data to firefighters during the emergency, and provided a rare opportunity to elucidate the impact of gaseous and particulate matter emissions on near-field communities and regional air pollution concentrations. The WBEA network recorded 188 fire-related exceedances of 1-hr and 24-hr Alberta Ambient Air Quality Objectives. Two air monitoring sites within Fort McMurray recorded mean/maximum 1-hr PM2.5 concentrations of 291/5229µgm-3 (AMS-6) and 293/3259µgm-3 (AMS-7) during fire impact periods. High correlations (r2=0.83-0.97) between biomass combustion related gases (carbon monoxide (CO), non-methane hydrocarbons (NMHC), total hydrocarbons (THC), total reduced sulfur (TRS), ammonia) and PM2.5 were observed at the sites. Filter-based 24-hr integrated PM2.5 samples collected every 6 days showed maximum concentrations of 267µgm-3 (AMS-6) and 394µgm-3 (AMS-7). Normalized excess emission ratios relative to CO were 149.87±3.37µgm-3ppm-1 (PM2.5), 0.274±0.002ppmppm-1 (THC), 0.169±0.001ppmppm-1 (NMHC), 0.104±0.001ppmppm-1 (CH4), 0.694±0.007ppbppm-1 (TRS), 0.519±0.040ppbppm-1 (SO2), 0.412±0.045ppbppm-1 (NO), 1.968±0.053ppbppm-1 (NO2), and 2.337±0.077ppbppm-1 (NOX). A subset of PM2.5 filter samples was analyzed for trace elements, major ions, organic carbon, elemental carbon, and carbohydrates. Sample mass reconstruction and fire specific emission profiles are presented and discussed. Potential fire-related photometric ozone instrument positive interferences were observed and were positively correlated with NO and NMHC.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2018 Tipo de documento: Article