Your browser doesn't support javascript.
loading
Elucidating the Mechanisms of the Tomato ovate Mutation in Regulating Fruit Quality Using Proteomics Analysis.
Liu, Juhua; Zhang, Jing; Miao, Hongxia; Jia, Caihong; Wang, Jingyi; Xu, Biyu; Jin, Zhiqiang.
Afiliação
  • Liu J; Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , 4 Xueyuan Road, Haikou 571101, China.
  • Zhang J; Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , 4 Xueyuan Road, Haikou 571101, China.
  • Miao H; Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , 4 Xueyuan Road, Haikou 571101, China.
  • Jia C; Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , 4 Xueyuan Road, Haikou 571101, China.
  • Wang J; Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , 4 Xueyuan Road, Haikou 571101, China.
  • Xu B; Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , 4 Xueyuan Road, Haikou 571101, China.
  • Jin Z; Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , 4 Xueyuan Road, Haikou 571101, China.
J Agric Food Chem ; 65(46): 10048-10057, 2017 Nov 22.
Article em En | MEDLINE | ID: mdl-29120173
The ovate mutation has frequently been used to study changes in fruit shape but not fruit quality. A deterioration in fruit quality associated with the ovate mutation was discovered in this study. To elucidate how ovate influences the quality of fruit, we performed a proteomics analysis of the fruits of the ovate mutant (LA3543) and wild-type ("Ailsa Craig", LA2838A) using tandem mass tag analysis. The results indicated that the ovate mutation significantly influences fruit quality in a number of ways, including by reducing the expression of 1-aminocyclopropane-1-carboxylic acid oxidase 3 (ACO3) in ethylene biosynthesis, improving firmness by reducing the amount of pectinesterase and polygalacturonase, reducing sugar accumulation by downregulating the abundance of mannan endo-1,4-ß-mannosidase 4, ß-galactosidase, and ß-amylase, and reducing the malic acid content by downregulating the accumulation of malic enzymes and malate synthase. These findings could inform future improvements in fruit quality.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Solanum lycopersicum / Frutas Idioma: En Revista: J Agric Food Chem Ano de publicação: 2017 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Solanum lycopersicum / Frutas Idioma: En Revista: J Agric Food Chem Ano de publicação: 2017 Tipo de documento: Article País de afiliação: China