Your browser doesn't support javascript.
loading
Size, Shape, and Sequence-Dependent Immunogenicity of RNA Nanoparticles.
Guo, Sijin; Li, Hui; Ma, Mengshi; Fu, Jian; Dong, Yizhou; Guo, Peixuan.
Afiliação
  • Guo S; Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA.
  • Li H; Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA.
  • Ma M; Center for Research on Environmental Disease, College of Medicine, Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA.
  • Fu J; Center for Research on Environmental Disease, College of Medicine, Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA.
  • Dong Y; Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State U
  • Guo P; Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA; College of Medicine, The Ohio State University, Columbus, OH 43210,
Mol Ther Nucleic Acids ; 9: 399-408, 2017 Dec 15.
Article em En | MEDLINE | ID: mdl-29246318
ABSTRACT
RNA molecules have emerged as promising therapeutics. Like all other drugs, the safety profile and immune response are important criteria for drug evaluation. However, the literature on RNA immunogenicity has been controversial. Here, we used the approach of RNA nanotechnology to demonstrate that the immune response of RNA nanoparticles is size, shape, and sequence dependent. RNA triangle, square, pentagon, and tetrahedron with same shape but different sizes, or same size but different shapes were used as models to investigate the immune response. The levels of pro-inflammatory cytokines induced by these RNA nanoarchitectures were assessed in macrophage-like cells and animals. It was found that RNA polygons without extension at the vertexes were immune inert. However, when single-stranded RNA with a specific sequence was extended from the vertexes of RNA polygons, strong immune responses were detected. These immunostimulations are sequence specific, because some other extended sequences induced little or no immune response. Additionally, larger-size RNA square induced stronger cytokine secretion. 3D RNA tetrahedron showed stronger immunostimulation than planar RNA triangle. These results suggest that the immunogenicity of RNA nanoparticles is tunable to produce either a minimal immune response that can serve as safe therapeutic vectors, or a strong immune response for cancer immunotherapy or vaccine adjuvants.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Mol Ther Nucleic Acids Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Mol Ther Nucleic Acids Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos