Your browser doesn't support javascript.
loading
Midbrain circuits that set locomotor speed and gait selection.
Caggiano, V; Leiras, R; Goñi-Erro, H; Masini, D; Bellardita, C; Bouvier, J; Caldeira, V; Fisone, G; Kiehn, O.
Afiliação
  • Caggiano V; Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
  • Leiras R; Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
  • Goñi-Erro H; Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
  • Masini D; Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
  • Bellardita C; Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
  • Bouvier J; Laboratory of Molecular Neuropharmacology, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
  • Caldeira V; Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
  • Fisone G; Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
  • Kiehn O; Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
Nature ; 553(7689): 455-460, 2018 01 25.
Article em En | MEDLINE | ID: mdl-29342142
ABSTRACT
Locomotion is a fundamental motor function common to the animal kingdom. It is implemented episodically and adapted to behavioural needs, including exploration, which requires slow locomotion, and escape behaviour, which necessitates faster speeds. The control of these functions originates in brainstem structures, although the neuronal substrate(s) that support them have not yet been elucidated. Here we show in mice that speed and gait selection are controlled by glutamatergic excitatory neurons (GlutNs) segregated in two distinct midbrain nuclei the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). GlutNs in both of these regions contribute to the control of slower, alternating-gait locomotion, whereas only GlutNs in the CnF are able to elicit high-speed, synchronous-gait locomotion. Additionally, both the activation dynamics and the input and output connectivity matrices of GlutNs in the PPN and the CnF support explorative and escape locomotion, respectively. Our results identify two regions in the midbrain that act in conjunction to select context-dependent locomotor behaviours.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mesencéfalo / Marcha / Vias Neurais Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Nature Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Suécia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mesencéfalo / Marcha / Vias Neurais Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Nature Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Suécia