Your browser doesn't support javascript.
loading
The Golgi ribbon in mammalian cells negatively regulates autophagy by modulating mTOR activity.
Gosavi, Prajakta; Houghton, Fiona J; McMillan, Paul J; Hanssen, Eric; Gleeson, Paul A.
Afiliação
  • Gosavi P; The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.
  • Houghton FJ; The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.
  • McMillan PJ; The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.
  • Hanssen E; Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, Victoria 3010, Australia.
  • Gleeson PA; The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.
J Cell Sci ; 131(3)2018 02 08.
Article em En | MEDLINE | ID: mdl-29361552
ABSTRACT
In vertebrates, individual Golgi stacks are joined into a compact ribbon structure; however, the relevance of a ribbon structure has been elusive. Here, we exploit the finding that the membrane tether of the trans-Golgi network, GCC88 (encoded by GCC1), regulates the balance between Golgi mini-stacks and the Golgi ribbon. Loss of Golgi ribbons in stable cells overexpressing GCC88 resulted in compromised mechanistic target of rapamycin (mTOR) signaling and a dramatic increase in LC3-II-positive autophagosomes, whereas RNAi-mediated depletion of GCC88 restored the Golgi ribbon and reduced autophagy. mTOR was absent from dispersed Golgi mini-stacks whereas recruitment of mTOR to lysosomes was unaffected. We show that the Golgi ribbon is a site for localization and activation of mTOR, a process dependent on the ribbon structure. We demonstrate a strict temporal sequence of fragmentation of Golgi ribbon, loss of Golgi mTOR and subsequent increased autophagy. Golgi ribbon fragmentation has been reported in various neurodegenerative diseases and we demonstrate the potential relevance of our findings in neuronal cells using a model of neurodegeneration. Overall, this study highlights a role for the Golgi ribbon in pathways central to cellular homeostasis.This article has an associated First Person interview with the first author of the paper.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Autofagia / Serina-Treonina Quinases TOR / Complexo de Golgi / Mamíferos Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: J Cell Sci Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Autofagia / Serina-Treonina Quinases TOR / Complexo de Golgi / Mamíferos Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: J Cell Sci Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Austrália